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The design of fish-like swimmers depends on understanding the interaction between the fluid motion
and the body dynamics of the fish. Towards this objective, the optimal motion of the fish – tail is
sought. As a simplified assumptions, the base body is assumed to be an elliptic shape while the tail
is approximated as an Euler-Bernoulli beam. Three cases for the tail motion are considered in this
paper. The first, second , and the third case are defined respectively as rigid beam, flexible beam in
which the flexible motion is assumed to be a linear superposition of simple harmonic motions that
have the shapes as the first and the second normal modes of the tail, and a flexible beam in which
the flexible motion of the tail is determined by solving the fluid-structure coupled problem. In all
three cases the input to the tail is pitching rotation at the root is to be determined by minimizing the
hydrodynamic power subjected to zero net thrust on the fish body. The unsteady hydrodynamic loads
are calculated using the two-dimensional unsteady vortex lattice method. The aim of the study is to
investigate the effect of the tail active and passive flexibility on the propulsive efficiency versus the
rigid tail.

Nomenclature
a Semi-chord length
E Modulus of elasticity of the tail
rk Position of the vortex shed from the tail trailing edge
θmax Maximum pitching angle of the tail
ρm Density of tail
Φ Phase shift between the first two mode shapes of Euler-Bernoulli beam
Γbi Strength of the ith bound vortex
Γwk

Strength of the kth wake vortex
Ψi The ith mode shape of Euler-Bernoulli beam
ν Poisson ratio of the tail
|Ψi| magnitude of ith mode shape

∗PhD student,Department of Biomedical and Engineering Mechanics, Virginia Tech., Blacksburg
†Professor, Department of Biomedical and Engineering Mechanics, Virginia Tech., Blacksburg
‡Assistant Professor, Department of Mechanical and Aerospace Development, University of California, Irvine

1 of 9

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 V

IR
G

IN
IA

 T
E

C
H

 o
n 

O
ct

ob
er

 3
1,

 2
01

8 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
8-

03
11

 

 2018 AIAA Aerospace Sciences Meeting 

 8–12 January 2018, Kissimmee, Florida 

 10.2514/6.2018-0311 

 Copyright © 2018 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. 

 

 AIAA SciTech Forum 

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2018-0311&domain=pdf&date_stamp=2018-01-07


I. Introduction
Motivated by the desire to understand and characterize fish, engineers have long considered modes of such motions

to inspire the design and improvement technologies for human need. Earlier considerations of the nature of fish
propulsion have been brought into attention by Lindsey [1], that was followed by more detailed work by Borelli [2].
The interest in understanding the generation of propulsive forces was mainly inspired by impressive structural and
kinematic capabilities. Further detailed work since Borelli has been diversified, with descriptions shared by Sir James
Gray (1933a–c), Lighthill [3], Webb Blake [4], Maddock et al. [5], and Triantafyllou et al. [6] among others. Published
literature included experimentally and analytically detailed analyses of patterns of body, morphological adaptations
and their effects on flow patterns that have helped scientists understand how propulsion is produced.

In swimming, fish vary their shape to generate fluid dynamic forces needed for propulsion and control. The os-
cillating tails and fins are able to generate additional thrust, and may also be used to balance roll and yaw moments
generated during locomotion. Our ultimate goal is to develop an understating of the underlying physics of fish lo-
comotion based on a three-dimensional potential flow model that can be used to support a geometrically controlled
framework for the design and control of pisciform swimmers. This would be achieved using periodically forced me-
chanical systems, and compromised of a series of rigid airfoil and flaps. The ultimate question to be answered is:
For what parameter values (Reynolds number, frequency of oscillation, number of links, and model parameters) will
the proposed unsteady flow model capture forces and moments with sufficient accuracy to support geometric control
design and analysis?

Towards that objective, we investigate the optimal kinematics of fish-tail motion. As a first step, we consider the
oscillatory type of fish in two dimensions. In this case, the base body is considered as a rigid part and the tail is
allowed to flap either flexibly or rigidly. The flexible motion of the tail is modeled in a two different ways. The first
one the flexible motion of the tail assumed to be a combination of a simple harmonic motions in time using the first
two mode shapes of Euler-Bernoulli beam. The second on the flexible motion of the tail is determined by solving the
fluid-structure coupled problem defined in Equations 1 and 2. The hydrodynamic loads is calculated using the two-
dimensional unsteady vortex lattice model (UVLM). The propulsive efficiency versus the Strouhal Number is depicted
for the three cases.

II. Geometrical Model of the Tail
The two-dimensional fish is modeled as a two bodies connected at one point as shown in Figure [1]. The base

body and tail are modeled as a rigid ellipse and a flexible beam respectively. The body and the tail are moving with the
same uniform velocity U∞. The input to the tail is angular displacement θ(t), and is to be determined by minimizing
the hydrodynamic power subjected to zero net thrust on the fish body. For the rigid beam case the deflection w is
neglected, i.e. w = 0, while for the first flexible case, active flexibility, it is taken to be a simple harmonic combination
of the first and second modes of the beam [7] as

w(x, t) = A1sin(ωt)Ψ1(x) +A2sin(ωt+ Φ)Ψ2(x) (1)

where A1 and A2 are the amplitude of the first and second mode respectively, and ω is the frequency of oscillation, i.e.
ω = 2πf . For the case of passive flexible beam, the tail deflection is determined as follows. The position of a general
point P on the tail and the angular velocity of the tail can be defined as

~rp = x̂i + wk̂ (2)

~ω = θ̇ĵ (3)

The inertial velocity and accelration can be computed as follows :

~V =
d~rp
dt

=
∂ ~rp
∂t

+ ~ω × ~rp

= θ̇wî +
(
ẇ − θ̇x

)
k̂

(4)

~a =
d~V
dt

=
∂~V
∂t

+ ~ω × ~V

=
(
θ̈w + 2θ̇ẇ − θ̇2x

)
î +
(
ẅ − θ̈x− θ̇2w

)
k̂

(5)
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Applying the equilibrium conditions on a general element centered at the point P in x and z directions, we get

T (x) =
mθ̇2

2
(R2 − x2) +m

∫ R

x

(
θ̈w + 2θ̇ẇ

)
dx (6)

∂2

∂x2

(
EI

∂2w

∂x2

)
− ∂

∂x

(
T (x)

∂w

∂x

)
+m

(
ẅ − θ̈x− θ̇2w

)
= FH(w) (7)

The instantaneous tail dispacement w(x, t) is determined by the solving the fluid-structured equations of motion
defined in Eq.(6) and Eq.(7) according to the flowchart shown in Figure 3. T (x) is the tension in the tail due to the
angular rotation θ(t). E and I are the modulus of elasticity and moment of inertia of the tail respectively. FH(w)
is the external hydrodynamic loads generated on the tail by the motion θ. The structural and hydrodynamic loads
are coupled through the presence of the variable w(x, t) in both sides. The calculation of the hydrodynamic loads is
defined in the next section.

Body

𝑼∞

Tail
𝒁

𝑿

𝒘(𝒙, 𝒕)

Optimal Wave Form 
is Unknown

𝒙

𝒛

𝜽 𝒕 = 𝜽𝒎𝒂𝒙𝒔𝒊𝒏(𝝎𝒕)

𝑷

Figure 1: Simple model of the fish-tail of oscillatory type.

III. Hydrodynamic Model
The hydrodynamic forces and moments generated by the tail motion are calculated using the unsteady vortex

lattice method (UVLM) [8, 9, 10, 11, 12, 13, 14]. The tail section can move and rotate with a velocity V and angular
velocity θ̇ respectively. As shown if Figure [2a], the tail is replaced by a vortex sheet of N bound vortices Γbi . At
each time step, a vortex is released from the trailing edge Γwi

. The Kutta condition is satisfied by placing the vortex at
the quarter chord of each panel and applying the no-penetration boundary condition at the three quarter point of each
panel [10, 14]. the strength of the shed vortex is determined by applying Kelvin circulation theorem at each time step,
i.e. d(

∑N
i=1 Γbi +

∑Nw

i=1 Γwi
)/dt = 0. The drag force acting on the base body is assumed to be constant based on a

drag coefficient of CD = 0.0018.

IV. Finite Element Model of the Coupled Problem
The finite element approach was applied to Eq.(7). The nonlinear term in the tension T (x) is neglected [15], i.e.

T (x) ≈ mθ̇2(R2 − x2)/2. The resulting equations are nonlinear time-varying of the form:

[M]{q̈}+ [K]{q} = {F(q)} (8)
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𝑽

ሶ𝜽

𝑎 𝑎

𝚪𝒘𝒌

𝒓𝒌

𝑿

𝒁

𝚪𝒃𝒏𝚪𝒃𝟏

𝒛

𝒙

Bound Vortices

Wake Vortices

a) Two dimesnional UVLM

Figure 2: Discrete vortex model of fish the tail.

Geometry, Kinematics and Material 
Properties 

Transform PDE to ODE using 
Discretization 

Solve Nonlinear ODE 

using NewMark Method

Convergence Criterion Test 

No

Yes

Calculate Loads CL, CT, CP, Efficiency

Stiffness, Mass Matrices

Governing Equations

Discretized Equations with Time 
Varying Coefficients

Hydrodynamic Loads from Numerical 

Simulation of the Fluid Flow

Optimal Operational 
Parameters

Flexible Tail 
undergoing pitching 

oscillation

Wake simulation 
behind the flexible tail

Figure 3: Flowchart for the solution of UVLM

where [M] is the mass matrix [K] is the stiffness matrix, and {F(q)} is the time-dependent forcing vector containing
terms that are dependent of the nodal degrees of freedom q resulting from the UVLM and the inertia loads. Hermite
polynomials are used to represent the distribution of q over one element [16] with two degrees of freedom at each
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node, i.e. q = {w ∂w/∂x}T . The coupling between the structure and the hydrodynamic loads appears in FH(q)
determined using the UVLM. At each time step, an initial position of the tail motion q(tk0) is assumed. Then the
hydrodynamic loads are calculated based on this configuration. A local iteration is performed until the difference
between two successive tail configurations are within the defined convergence criteria, i.e. |q(tkm+1) − q(tkm)| < ε.
Then the tail configuration at the next time step is set to be the one form the last local iteration, i.e. q(tk+1

0 ) = q(tkm+1).
The procedure used for the local iteration and solving for the instantaneous tail position w is shown in Figure 3.
Newmark method [17] is used to integrate the equations of motion (8) in time with integration parameter α = 0.6. the
effect of varying this parameter will be addressed in future work.

V. Numerical Data and Assumptions
In this study, we made some assumptions to simplify the problem. For the case of the active flexible beam, the

input θ(t) and the harmonic term in the deflection w(x, t) have the same frequency ω. This is not the situation in a
general case. In future work, an independent function of time will be assigned to each motion. The values of the tail
geometry and material properties, aluminum, used in this study are defined in Table 1. A convergence curve for the
2D-UVLM is shown in Figure 4. Based on this results, we choose the panel size to be dx = Chord/50 and time step
to be dt = 2π/(ω100).

0 20 40 60 80 100 120 140 160 180 200

Number of Panels (Nx)

0.72
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0.74

0.75
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0.77
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0.81

0.82

C
L

0.076

0.077

0.078

0.079

0.08

0.081

0.082

0.083

0.084

C
T

Convergence Curve

Nt = 25
Nt = 50
Nt =100
Nt = 150
Nt = 200

a) Lift and thrust coefficeients versus number of panels for different time steps.

Figure 4: Convergence curves for the two-dimensional UVLM
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Table 1: Parameters Value

Chord 150 mm Span 50 mm
t 2.7 mm E 69 GPa
ρm 2750 kg/m3 ν 0.3
θmax 7.2o

VI. Results
Figure [5] shows the thrust efficiency defined as a percentage of the input power for different cases of rigid and

active and passive flexible tails. The results show that mode 2 forcing yield the highest efficiency near Strouhal number
of St = 0.15. In comparison mode 1 yields the lowest efficiency. The passive flexible tail yields an efficiency more
than rigid case. Also the case of adding the two modes does not improve the efficiency. In future work, a range of
flexible tails will be considered to investigate the effect of flexibility on the efficiency and if a certain mode can be
excited to achieve more thrust efficiency.

The time histories of the lift, thrust, and power coefficients at the optimal efficiency for the three cases are depicted
in Figure [6] over five flapping cycles. Achieving steady-state solution is noted, which implies that the solution can
be used for comparing its performance with other configurations. In Figure [7], the wake generated by the fish tail
is shown for the three cases. The red and blue indicates clockwise and anti-clockwise vortices respectively. This
behviour has shown by Willis [18] to be the the same pattern of von Kármán street but of opposite signs of the wake
vortices. The von Kármán street pattern of the wake vortices indicates that the net horizontal force is drag. In contrast,
when the signs of the wake vortices switched as in the present case in Figure [7], the net horizontal force is thrust.
The difference between the wake structure between the different cases is hard to distinguish which is expected because
the amplitude of the oscillations is maintained constant for all cases. In future, we will examine the level of vorticity
generated by the different configurations.

Conclusion
In this paper, the propulsive efficiency is compared for three cases of the fish-tail. The cases are rigid, active

flexible, and passive flexible beam respectively. The results showed that optimal efficiency is achieved for the case
of the active flexible beam with the second mode. On the other hand, the passive flexible beam have more optimal
efficiency than the rigid one but less than that of the tail excited with the second mode. The future plan is to assign an
independent function for the rigid body rotation, and the first and second mode through an optimization frame work
to determine the optimum parameters. Based on these optimization results, we will design the tail flexibility such that
the mode that gives high efficiency is excited.
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Figure 6: Time history of lift, thrust and power coefficients at optimal Strouhal number for the last two pitching cycles.
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b) Wake pattern behind the fish-tail for the passive flexible beam.
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d) Wake pattern behind the fish-tail for the active beam with the
second mode.
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e) Wake pattern behind the fish-tail for the active beam with the
second mode.

Figure 7: Wake pattern behind the fish-tail for the rigids, passive, and active flexible beam
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