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Dynamical System Representation and Analysis of Unsteady Flow and

Fluid-Structure Interactions

Ahmed A. Hussein

(ABSTRACT)

A dynamical system approach is utilized to reduce the representation order of unsteady fluid flows

and fluid-structure interaction systems. This approach allows for significant reduction in the com-

putational cost of their numerical simulations, implementation of optimization and control method-

ologies and assessment of their dynamic stability. In the first chapter, I present a new Lagrangian

function to derive the equations of motion of unsteady point vortices. This representation is a rec-

onciliation between Newtonian and Lagrangian mechanics yielding a new approach to model the

dynamics of these vortices. In the second chapter, I investigate the flutter of a helicopter rotor blade

using finite-state time approximation of the unsteady aerodynamics. The analysis showed a new

stability region that could not be determined under the assumption of a quasi-steady flow. In the

third chapter, I implement the unsteady vortex lattice method to quantify the effects of tail flexibil-

ity on the propulsive efficiency of a fish. I determine that flexibility enhances the propulsion. In the

fourth chapter, I consider the stability of a flapping micro air vehicle and use different approaches

to design the transition from hovering to forward flight. I determine that first order averaging is not

suitable and that time periodic dynamics are required for the controller to achieve this transition.

In the fifth chapter, I derive a mathematical model for the free motion of a two-body planar system

representing a fish under the action of coupled dynamics and hydrodynamics loads. I conclude

that the psicform are inherently stable under certain conditions that depend on the location of the

center of mass.



Dynamical System Representation and Analysis of Unsteady Flow and

Fluid-Structure Interactions

Ahmed A. Hussein

(GENERAL AUDIENCE ABSTRACT)

We present modeling approaches of the interaction between flying or swimming bodies and the

surrounding fluids. We consider their stability as they perform special maneuvers. The approaches

are applied to rotating blades of helicopters, fish-like robots, and micro-air vehicles. We develop

and validate a new mathematical representation for the flow generated by moving or deforming

elements. We also assess the effects of fast variations in the flow on the stability of a rotating

helicopter blade. The results point to a new stable regime for their operation. In other words, the

fast flow variations could stabilize the rotating blades. These results can also be applied to the

analysis of stability of rotating blades of wind turbines. We consider the effects of flexing a tail

on the propulsive force of fish-like robots. The results show that adding flexibility enhances the

efficiency of the fish propulsion. Inspired by the ability of some birds and insects to transition

from hovering to forward motion, we thoroughly investigate different approaches to model and

realize this transition. We determine that no simplification should be applied to the rigorous model

representing the flapping flight in order to model transition phenomena correctly. Finally, we

model the forward-swim dynamics of psciform and determine the condition on the center of mass

for which a robotic fish can maintain its stability. This condition could help in designing fish-like

robots that perform stable underwater maneuvers.



Dedication

The almighty Allah says in his holy book, the Quran, chapter Yusuf, verse 76

which may be translated as We elevate by degrees whomever We will; and above every person of

knowledge, there is one more learned.
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Chapter 1

Introduction

1.1 Background

Some of the models which represent dynamical systems that are involved in engineering applica-

tions these days can be described as a first-order differential equation of the form

ẋ = f(x, t) (1.1)

This general differential equation could represent the dynamics of a discrete dynamical system

[1, 2] or could be the result of a discretization of a general partial differential equation [3, 4].

Analyzing the dynamics of this system (1.1) depends on the type of the application. In Chapter

2, Eq. (1.1) represents the equations of motion of unsteady point vortices. It was first derived by

Brown and Michael [5] using Newtonian approach. Here we proposed a new Lagrangian function

from which the same equation of motion could be derived. This represent a reconciliation between

Lagrangian and Newtonian approach for the dynamics of unsteady point vortices. The use of

previous Lagrangian proposed by Chapman [6] does not yield the Brown-Michael equation.

In Chapter 3, Eq. (1.1) represents the finite degrees of freedom of an aeroelastic system of a

helicopter blade rotating in hover. The dynamics of this system is analyzed by linearizing around

1
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the equilibrium positions as

ẋ =
∂f(x, t)

∂x
|x−x0 = A(x0)x (1.2)

The stability of this system is investigated using the eigen value technique. In Chapter 4, Eq. (1.1)

represents the finite degrees of freedom of hydroelastic system of a fish tail oscillating in water.

The dynamics of this system is analyzed by numerically integrating Eq. (1.1) as

xm+1 = xm + ∆tf(mm+1, tm+1) (1.3)

As will be shown later, explicit methods for local iteration introduce numerical instability for this

type of problem. Instead, we used an implicit solver for the time integration, Newmark method [7],

and compared two different methods for the local iteration: loosely coupling (fixed point iteration

with under relaxation factor), and strong coupling (Newton Raphson). The resulting time histories

of the deflections x are used to calculate the power and the thrust to compare the efficiency for the

rigid case versus the flexible one.

In Chapters 5 and 6, Eq. (1.1) represents the degrees of freedom of the rigid body motion of a

flapping micro air vehicle and planar fish-like robotic, respectively. Since the input to this problem

is periodic, the equilibrium solution can be described as a periodic solution

x(t+ T ) = x(t) (1.4)

The stability of this type of orbit is assessed using Floquet theory. As seen from the above discus-

sion, all the problems that are discussed in this dissertation are written in the same compact form

(1.1), the analysis of their dynamics are different depending on two main things: 1) their nature,

either finite degrees of freedom system or of a finite discretization of an infinite degrees of freedom

system , 2) the goal of the analysis. Figure 1.1 shows a brief layout of the problems solved in this

dissertation.
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ሶ𝒙 = 𝒇(𝒙, 𝒕)

𝒅

𝒅𝒕

𝝏𝑳

𝝏 ሶ𝒙
−
𝝏𝑳

𝝏𝒙
= 𝟎 → ሶ𝒙 = 𝒇(𝒙, 𝒕)

ሶ𝒙 = 𝑨 𝒙𝟎 𝒙 𝒙𝒎+𝟏 = 𝒙 + 𝚫𝐭 𝒇(𝒙𝒎+𝟏, 𝒕𝒎+𝟏)

Reconciliation between Lagrangian and 
Newtonian Approach for Unsteady 

Point Vortices

Discretization of Infinite 
Degrees of Freedom System

Eigen Value Analysis Direct Numerical Integration

Rigid Body Dynamics of 
FWMAV and Fish planar motion

ሶ𝒙 = 𝒇(𝒙, 𝒕)

Floquet Analysis and 
Controller Design

𝒙 𝒕 + 𝑻 = 𝒙(𝒕)

Rotor Blade in Hovering Flexible Fish Tail

Figure 1.1: Layout of the techniques used to solve the different problems in the dissertation.

1.2 Layout of the Dissertation

In Chapter 2, we proposed a new Lagrangian function for unsteady point vortices [8, 9]. The new

Lagrangian and Chapman’s [6] one yield the same equation of motion for the case of constant

strength point vortices. For the case of unsteady point vortices, the proposed Lagrangian agrees

with the same dynamical equation derived by Brown and Michael [5]. In addition, the proposed

Lagrangian allows for the integration of the equations of motion using the weak form (variational

form) which was not directly applicable to the strong form (differential equation) [5].

In Chapter 3, we investigated the flutter phenomena of helicopter rotor blades in hover [10]. The

blade structure is modeled as three-dimensional beam and the unsteady aerodynamics is mod-

eled using a two-dimensional strip theory [11, 12]. The flutter analysis is performed about the

equilibrium conditions which are obtained using the Newton-Raphson method. We constructed
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a finite-state time approximation for the unsteady aerodynamics loads of Theordorsen [13] and

Loewy’s [14] strip theories. The results showed that unsteady aerodynamics have a stabilization

effect at lower pitching angle [15], which was not clear in the previous work [16].

In Chapter 4, we looked at the effect of tail flexibility on the propulsive efficiency of fish-like lo-

comotion [17]. The tail structure is modeled as a beam and the hydrodynamic loads are calculated

using the unsteady vortex lattice method (UVLM) [18, 19]. The equations of motion are inte-

grated using Newmark method [7]. The coupling between the structure and hydrodynamic loads

is performed using two different methods: the under-relaxation (loose coupling), and the Newton-

Raphson method (strong coupling). The latter one showed more stability to any input parameters

unlike the first one. The results using a two-dimensional UVLM with an aspect ratio correction

[20] indicate a slight enhancement in the propulsive efficiency with an inconsistency for the results

of the active flexible cases. On the contrary, the results using a three-dimensional UVLM show a

consistent improvement in the propulsive efficiency.

In Chapter 5, we examined the stability of the flapping wing micro-air vehicle (FWMAV) using

Floquet theory. The results showed that the stability of hovering orbits depend on the periodic

orbit, i.e. stable and unstable equilibrium exist. On the other hand, the forward flight orbit is

always unstable. Furthermore, we investigated the controller design to switch between hovering

and forward flight for both averaged and time-periodic dynamics. The results of the transition

between these two flight conditions indicate that first-order averaged dynamics is not suitable for

controller design [21].

In Chapter 6, we derived a mathematical model for psciform freely moving in a plane under the

action of the coupled dynamics and hydrodynamic loading generated by both the body and tail. We

extended Garrick’s [22] model for an airfoil oscillating with a flap to account for the time-varying

free stream [23]. We showed that the psciform is inherently stable if center of mass is ahead of the

mid-point of the total length of the body and tail. If this is not the case, the equilibrium orbit of

the fish is unstable and a feedback controller is needed to switch between different forward speeds.

We conclude in Chapter 7 by summarizing the results in this dissertation.



Chapter 2

A Variational Approach for the Dynamics of

Unsteady Point Vortices

In this chapter, we present a new Lagrangian function for the dynamics of point vortices that is

more general than Chapman’s [6]. We examine the relation between the proposed Lagrangian and

Chapman’s Lagrangian for the cases of constant strength and time-varying point vortices. Interest-

ingly, the proposed Lagrangian dynamics of unsteady point vortices recovers the momentum based

Brown-Michael model [24]. We apply the resulting dynamic model of time-varying vortices to the

problem of an impulsively started flat plate as well as an accelerating and pitching flat plate, with

comparison to experimental data in the literature [25, 26]. To the best of our knowledge, this is the

first variational principle to govern the dynamics of unsteady point vortices.

5
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2.1 Lagrangian Dynamics of Point Vortices

2.1.1 General Formulation

Considering the flow around a sharp-edged body (in the z-plane) and mapping it to the flow over a

cylinder (in the ζ-plane) with an interrelating conformal mapping z = z(ζ), as shown in Fig. 2.1,

the regularized local fluid velocity (Kirchhoff velocity) of the shed kth vortex is given by [27–29]

dzk
dt

= wk(zk) =
1

[z′(ζk)]∗
lim
ζ−→ζk

[
∂F

∂ζ
− Γk

2πi

1

ζ − ζk
− Γk

4πi

z′′(ζ)

z′(ζ)

]∗
(2.1)

where F is the complex potential, Γk is the constant strength of the kth vortex, and the asterisk

refers to a complex conjugate. The last term on the right hand side, which involves the second

derivative of the transformation, was first derived by Routh then by Lin [27] and later by Clements

[28].

𝜻 𝑃𝑙𝑎𝑛𝑒

𝜞𝒌

𝒛𝒌

𝜼

𝝃

𝒁 𝑃𝑙𝑎𝑛𝑒

𝒙

𝒄

𝟐

𝜞𝒌

𝑼∞
𝑹

𝜻𝒌

𝜶

𝒚

ෝ𝒙
ො𝒛

ෝ𝒚

𝒛𝒄

𝒁(𝜻)

Figure 2.1: Conformal mapping between a sharp-edged body and a circular cylinder.



Ahmed A. Hussein Chapter 2 7

Lin [30] showed the existence of a Kirchhoff-Routh function W ([31, Sec.13.48]) that relates the

velocity components of the kth vortex to the derivatives of W , in a Hamiltonian form, such that

Γkuk =
∂W

∂yk

Γkvk = −∂W
∂xk

(2.2)

The Kirchhoff-Routh function W̃ in the circle plane is related to the stream function ψ0 by [27, 31,

32]

W̃ (ξk, ηk) = Γkψo(ξk, ηk) +
∑
k,l,k 6=l

ΓkΓl
4π

[
ln|ζk − ζl| − ln|ζk − ζIl |

]
+
∑
k

Γ2
k

4π
ln|ζk − ζ(I)

k | (2.3)

where ψo is the stream function of the body motion (i.e., F = F0 +
∑n

k=1 Γk and F0 = φ0 + iψ0).

Then the relation betwen the Kirchhoff-Routh function W in the flat plate plane and that in circle

plane W̃ is given as [27] :

W = W̃ +
∑
k

Γ2
k

4π
ln|dz

dζ
| (2.4)

It is noteworthy that, as shown by Lin [30], the term ρW is a measure of the kinetic energy, where

ρ is the density of the fluid. As such, the equations of motion of constant strength vortices can be

determined from an energy minimization process. More details about the Hamiltonian structure of

the motion of point vortices are provided by Aref [33].

2.1.2 Proposed Lagrangian of Point Vortices

We postulate a new Lagrangian function for the motion of point vortices in an infinite fluid in the

z-plane in the most basic form as

L(zk, z
∗
k, żk, ż

∗
k) =

1

i

n∑
k=1

Γkz
∗
k żk +W (2.5)
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where the first term is the bilinear function in variables zk and żk, and the second term is the Routh

stream function

W = − 1

2π

∑
k,l,k 6=l

ΓkΓl ln(zk − zl)(zk − zl)∗ (2.6)

The variable zk and its conjugate z∗k are treated as an independent variables. The bilinear nature of

the first term ensures that the resulting equations of motion will involve only time derivatives of

first order. The same concept was introduced by Chapman whose Lagrangian is written as

L′(zk, z
∗
k, żk, ż

∗
k) =

1

2i

n∑
k=1

Γk(z
∗
k żk − zkż∗k)−

1

2π

∑
k,l,k 6=l

ΓkΓlln(zk − zl)(zk − zl)∗

= Io +W

(2.7)

where I0 is one of the constants of motion associated with the motion of vortices of constant

strengths in an infinite fluid. This Lagragian was then used in different contexts [34, 35].

The proposed Lagrangian L and Chapman’s Lagrangian L′ are related via a gauge symmetry for

the case of constant-strength vortices. That is, we have

L′ = L− 1

2i

d

dt

n∑
k=1

Θk (2.8)

where Θk = Γkz
∗
kzk is the angular momentum of the kth vortex about the origin. Note that the

gauge symmetry between any two Lagrangian functions such as L and L′ implies that they add up

to a total time derivative of some function, i.e., we have

L′ = L+
d

dt
[F (q, t)] (2.9)

where q are the generalized coordinates. As such, it is said that L and L′ are related by a gauge

symmetry or a gauge transformation and that both are gauge invariant [1, 36].

On the other hand for the case of constant strength vortices, using Eq. (2.8), one may explain Chap-

man’s LagrangianL′ as a constrained version of our proposed LagrangianL to satisfy the constraint
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that the total angular momentum of the vortices about origin is conserved; i.e., d
dt

∑n
k=1 Θk = 0.

2.1.3 Dynamics of a Constant Strength Point Vortices

To obtain the equations of motion for the case of vortices of constant strength, we define the action

to be the integral of the Lagrangian

S =

∫ t2

t1

L(zk, z
∗
k, żk, ż

∗
k)dt (2.10)

Applying the principle of least action, i.e. setting the first variation of the action integral S to zero,

the corresponding Euler-Lagrange equations are written as

d

dt

(
∂L

∂żk

)
− ∂L

∂zk
= 0 (2.11)

which yields the Biot-Savart law [19, 31, 37] that governs the motion of point vortices and is given

by

ż∗k =
1

2πi

∑
k,l,k 6=l

Γk
zk − zl

(2.12)

The same result can be obtained using Chapman’s Lagrangian L′ [6].

2.1.4 Dynamics of Unsteady Point Vortices Interacting with a Conformal

Body

For a single point vortex of constant strength Γ, the Lagrangian proposed in Eq. (2.5) is written as

L(z, z∗, ż, ż∗) =
1

i
Γz∗ż +W (z, z∗) (2.13)

where W (z, z∗) is the Kirchhoff-Routh function, which is a measure of the instantaneous energy

in the flow [30] while accounting for the presence of the body. Allowing for a time-varying vortex
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strength (i.e. Γ = Γ(t)), a term that depends on the time rate of change of circulation (i.e. d/dtΓ) is

added to ensure that the derivatives resulting from the bilinear function are coordinate-independent.

As such, the Lagrangian is written as

L(z, z∗, ż, ż∗) =
1

i

(
Γz∗ż + Γ̇z∗0z

)
+W (z, z∗) (2.14)

where z0 is the coordinate of an arbitrary point on the body.

Now the Lagrangian of n point vortices of time-varying strengths is written as

L(zk, z
∗
k, żk, żk

∗) =
1

i

n∑
k=1

(
Γkz

∗
k żk + Γ̇kz

∗
0kzk

)
+W (zk, z

∗
k) (2.15)

where z0k is the coordinate of a reference point on the body, which is usually the coordinate of the

edge from which the vortex is shed [24, 29, 38, 39].

Applying Euler-Lagrange equations (2.11) associated with minimizing the action integral based on

this transformed Lagrangian (2.15), we obtain the dynamics of an unsteady point vortex as

żk +
Γ̇k
Γk

(zk − z0k) = (
i

Γk

∂W

∂zk
)∗ (2.16)

which reduces to the Biot-Savart law given by Eq. (2.12) if Γ̇ is set to zero.

The right hand side of Eq. (2.16) can be represented in terms of the regularized local fluid velocity

(Kirchoff velocity) w∗(zk), obtained from Eq. (2.1) as shown by [31], which is expressed as

(
i

Γk

∂W

∂zk
)∗ = w∗(zk) (2.17)

Combining Eq. (2.16) and Eq. (2.17), we write

żk +
Γ̇k
Γk

(zk − z0k) = w∗(zk) (2.18)

which is exactly the same equation obtained by Brown and Michael [24] from a completely differ-
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ent approach that was based on a linear momentum argument.

While both the proposed Lagrangian L and Chapman’s L′ [6] yield the exact same dynamics for

constant-strength vortices, i.e. the Biot-Savart law, they yield different dynamics for unsteady point

vortices. Adding a similar term to Chapman’s Lagrangian L′ to obtain a coordinate-independent

expression for the vortex absolute velocity and minimizing the action integral based on this trans-

formed Lagrangian, the resulting equation of motion is

żk +
Γ̇k
2Γk

(zk − z0k) = w∗(zk) (2.19)

which differs from that of Brown-Michael by the factor of one half that multiplies the Γ̇-term.

Next, we apply the variational principle approach as defined above and evaluate the performance

of both postulated and Chapman’s [6] Lagrangians in predicting flow quantities. Particularly, we

compare time histories of the circulation and lift coefficient to those obtained using the impulse

matching model by Wang and Eldredge [29] and Wagner’s function [40].

2.2 Impulsively Stared Flat Plate (The Starting Vortex Prob-

lem)

We consider a flat plate of semi-chord c/2 mapped from a circle of radius R, as shown in Fig. 2.1,

according to the conformal mapping

z(ζ) = zc + g(ζ)eiα (2.20)

where the mapping function, g, is defined as

g(ζ) = ζ +
R2

ζ
(2.21)
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The derivative of z with respect to ζ is

dz

dζ
= g′(ζ)eiα (2.22)

We also consider the case where the flat plate is moving with a constant speed U∞ , inclined to the

x-axis by an angle α. A vortex of strength Γv is shed from the trailing edge as shown in Fig. 2.1.

For this flow, the complex potential in the circle plane is written as [31, 32, 38]

F (ζ) = φ(ζ) + iψ(ζ) = V (ζ − g(ζ)) +
R2V̄

ζ
+

Γv
2πi

[
ln(ζ − ζv)− ln(ζ − ζ(I)

v )
]

(2.23)

where φ is the velocity potential, ψ is the stream function, V = −U∞eiα is the velocity of the flat

plate in the plate-fixed frame, and ζIv = R2/ζ∗v denotes the position of the image vortex within the

circle. The first term inside the brackets (ζ − g(ζ)) ensures that the complex potential will contain

only ζ with negative power (see [31, Sec. 9.63] , [37, Sec. 4.71], [32, Sec. 4], [38, Sec. 3.2]).

2.2.1 Dynamics of the Starting Vortex

Taking the origin at the mid-chord point and assuming that the starting vortex shed from the trail-

ing edge (ẑv0 = −c/2), we write the evolution equation of the starting vortex according to the

Lagrangian dynamics as

żv +
Γ̇v
βΓv

(zv − zv0) = (
i

Γv

∂W

∂zv
)∗

= (
i

Γv

∂W

∂ζv
(
dz

dζ
)−1
zv )∗

= w∗(zv)

(2.24)

where β is a factor used to differentiate between the equation obtained from the proposed La-

grangian L (β = 1) or Chapman’s Lagrangian L′ (β = 2). The calculation of the value of Γv and
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its time derivative will be discussed in 2.2.2. Also, we have

W (zv) = Γvψo +
Γ2
v

4π
|ln(ζv − ζ(I)

v )|+Γ2
v

4π
ln|dz
dζ
|zv (2.25)

and

ψ0 = Im

(
V (ζ − g(ζ)) +

R2V ∗

ζ

)
(2.26)

Transforming Eq. (2.24) to the circle plane, the first term in the left hand side is written as

żv = U∞ + g′(ζv)e
iαζ̇v (2.27)

and the right hand side of Eq. (2.24) is re-written as

w∗(ζ) =
eiα

[g′(ζ)]∗

[
V (1− g′(ζ))− R2V̄

ζ2
− Γv

2πi

1

ζ − ζIv
− Γv

4πi

g′′(ζ)

g′(ζ)

]∗
=

eiα

[g′(ζ)]∗

[
V − R2V̄

ζ2
− Γv

2πi

1

ζ − ζIv
− Γv

4πi

g′′(ζ)

g′(ζ)

]∗
− V e−iα

(2.28)

Recalling that V = −U∞eiα, we write

w∗(ζ) =
eiα

[g′(ζ)]∗

[
V − R2V̄

ζ2
− Γv

2πi

1

ζ − ζIv
− Γv

4πi

g′′(ζ)

g′(ζ)

]∗
+ U∞ (2.29)

The evolution equation is then re-written in terms of the circle-plane variables as

ζ̇v +
Γ̇v
βΓv

(g(ζv)− 2R)

g′(ζv)
=

1

g′(ζv)[g′(ζv)]∗

[
V − R2V̄

ζ2
v

− Γ

2πi

1

ζv − ζIv
− Γv

4πi

g′′(ζv)

g′(ζv)

]∗
(2.30)

A more general form of Eq. (2.30), for β = 1, for a flat plate moving and rotating in space can be

found in the work of Michelin and Smith [38], which will be used, without derivation, for the case

of pitching flat plate.
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2.2.2 Aerodynamic Forces

𝑪∞

𝑪𝒗
Γ𝒗

𝑪

Figure 2.2: The contour used to evaluate the integral on the solid body. The flat plate is
exaggerated to show the direction of the contour

The force on the flat plate is obtained using the force formula derived by Sedov [41], in terms of

the complex variable z, as

Fx + iFy = −iρzo
dΓv
dt

+
iρ

2

∫
C

[w(z)]2dz +
d

dt

[
iρ

∫
C

zw(z)dz

]
(2.31)

Using Cauchy’s theorem [42], the integration can be changed from an integration over the solid

body C to an integration over the infinite domain C∞ that excludes the integration over an in-

finitesimally small contour Cv around the vortex (see [38, Sec.3.4.1]) as shown in Fig. 2.2. Upon

evaluating the integration, the force in terms of the complex variable ζ becomes

Fx + iFy = iρeiα
[
2iπR2Im(V ) +

d

dt

(
Γv(ζv −

R2

ζ̄v
)

)]
(2.32)

The vortex strength Γv is calculated by satisfying the Kutta condition at each time instant. The
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Kutta condition is implemented by requiring that the tangential velocity at the trailing edge in the

circle plane vanishes; i.e., the terms inside the brackets in Eq. (2.30) are set to zero at the trailing

edge to cancel the singularity due to 1 − R2/ζ2
v0 = 0. This will ensure a finite velocity at the

trailing edge. As such, we write

V − R2V̄

ζ2
0

+
Γv
2πi

(
1

ζ0 − ζv
− 1

ζ0 − ζIv
) = 0 (2.33)

Equation (2.33) is then re-written as

2iIm(V ) +
Γv
2πi

(
−R2 + (ηv + ξv)

2

2(η2
v + (ξv − 2)2)

)
= 0 (2.34)

where ξv and ηv are the real and imaginary parts of ζv.

By simple manipulation, Eq. (2.34) is re-written in a simple form as [29, 38]

2Im(V ) +
Γv
2π
Re

(
ζv0 +R

ζv0 −R

)
= 0 (2.35)

Equation (2.35) is used to calucalte the value of Γv and its time derivative Γ̇v. For the force

calculations using the impulse of the starting vortex, the reader is referred to section 3.10 of Ref.

[43].

2.3 Numerical Results

Two types of airfoil motion are considered in this section: (i) an impulsively started motion in

which the airfoil is suddenly accelerated to velocity U∞, (ii) a finite acceleration from rest to reach

U∞ after some non-zero but finite time, and (iii) and the vortex generated by a pitching plate. For

integrating the equations of motion, we used the Matlab solver ode15s with a fixed time step of

∆t = 10−5c/U∞. This solver shows a better and stable performance than others because of the

stiff nature of the evolution equation. For the first time step, instead of integrating the equations
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of motion analytically along with the Kutta condition as in Refs [38, 44], we used an appropriate

initial condition for the position of the vortex , i.e. x(0) = c/2 + ε, where ε ≈ 10−4c.

2.3.1 Impulsively Started Flat Plate

First, similar to the classical unsteady thin airfoil theory (e.g., Wagner [40], Theodorsen [13], and

Von Karman and Sears [45]), we assume that the starting vortex moves along the x-axis and the

local fluid velocity is U∞ (i.e., w(zv) = U∞). As such, the evolution equation (2.24) in the z plane

is written as

ẋv +
Γ̇v
βΓv

(xv − xv0) = U∞ (2.36)

The evolution equation of the impulse matching model [29, 39] can also be simplified to

ẋv +
Γ̇v
Γv

(x2
v − x2

v0)

xv
= U∞ (2.37)

Figure 2.3 shows the time variations of the normalized vortex strength Γv, the lift coefficient CL,

and the time-variation of the normalized vortex location xv for the case of α = 5o. Plots from sim-

ulations based on (i) the proposed Lagrangian dynamics (β = 1 Brown-Michael), (ii) Chapman’s

Lagrangian (β = 2), (iii) the impulse matching model of Wang and Eldredge [29], and (iv) Wag-

ner’s [40] step response function are presented for the sake of comparison. The impulse matching

results are more relatively a close to the Wagner’s one.
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(a) Time variation of the normalized vortex strength Γv .
The circulation is normalized with the steady-state value
ΓSS .
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(b) Time variation of the lift coefficient CL
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(c) Time variation of the normalized vortex position xv .
The position is normalized using the semi-chord of the
airfoil.

Figure 2.3: Time variations of (a) the normalized circulation, (b) lift coefficient and (c) normalized
position of the starting vortex for α = 5o and the vortex is assumed to move only in the x direction.
The time is normalized using the airfoil speed U∞ and chord c.

The plots show that all models agree qualitatively with Wagner’s exact potential flow solution.

Note that in the three models, the infinite sheet of wake vorticity is approximated by a single

vortex. As expected, the correction to the Kirchhoff velocity (taken as U∞ here) in the case of

β = 2 is half of that in the case of β = 1 yields slightly higher (spurious) lift.
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Next, we consider increasing the angle of attack to α = 10◦ to relax the flat wake assumption, thus

the vortex moves in the plane, i.e. with two degrees of freedom. Figure 2.4 shows the resulting

time variations of the normalized circulation Γv, lift coefficient CL, vortex position along the xv-

axis, and the slope of the vortex trajectory θv as a function of xv. The singular value of the lift at

t = 0, which corresponds to the added mass effect, is removed to highlight the difference between

results from different models. Again, the results based on L′ (β = 2) predict a larger vortex

strength (airfoil circulation) and a slightly higher lift, than those predicted by the two other models.

Figure 2.4d shows that the slope of the starting vortex asymptotically approaches a line parallel to

the incident free stream (i.e. θv ≈ α = 10o). As shown, the proposed Lagrangian (Brown-

Michael model) yield lift and circulation values that do no match Wagner’s function. In addition,

the impulse matching results in a slower downstream convection. Consequently the development of

circulation takes place at a slower rate with an overall effect of reduced lift coefficient that matches

Wagner’s function. We note, however, that the Wagner’s response should not be considered as a

reference for comparison in this case because of the flat-wake and shedding by U∞ assumptions

that may not be appropriate for the relatively large angle of attack. This can be seen from the

high-fidelity results in Fig. 2.4b as the lift starts to disagree with Wagner’s function after non-

dimensional time of U∞t/c > 1.2. The high-fidelity results were produced in Ref.[29] using the

viscous vortex particle method developed by Eldredge [46].
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(a) Time variation of the normalized vortex strength Γv .
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(b) Time variation of the lift coefficient CL
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(c) Vortex position xv versus non-dimensional time
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(d) Slope of the vortex trajectory θv versus vortex position
xv

Figure 2.4: Time variations of (a) the normalized circulation, (b) lift coefficient, (c) normalized
position of the starting vortex, and the slope of the vortex trajectory for α = 10o and the vortex is
allowed to move freely in the plane of the airfoil. The time is normalized using the airfoil speed
U∞ and chord c.

2.3.2 Flat Plate Accelerating from Rest

Next, we consider the lift on a flat plate that accelerates from rest. To validate our results, we

consider the velocity profile of Beckwith and Babinsky [25] that is shown in Fig. 2.5. In that
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experiment, the airfoil is accelerated to the velocity U∞ = 0.48 m/s over a distance of 0.6 chords.
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of delayed stall and the Wagner e⇥ect has not been investigated.
The current study examines a finite span flat plate accelerated from rest. Since flow in this Re regime

is dominated by separations, wings with airfoil cross-sections o⇥er little benefit over simple flat plates.
Schmitz [16] found that at Re = 104 thin flat plates have superior lift characteristics compared to conventional
aerofoils, and Okamoto [14] found that flows on wings of AR < 2 are more a⇥ected by cross sectional shape.
Consequently, the current study investigates a 2.5% thick flat plate with semispan AR = 4 (larger then
the crucial value of 2). This AR is relevant to hummingbirds and dragonfly wings which generally exhibit
semispan aspect ratios between 3 and 4 (derived from Ng [13]). The purpose of the work is to build knowledge
of the flow field and bridge from existing 2D steady-state data to the full 3D unsteady test case. Testing
methods fully characterize flow field and resulting force production. The role of the Wagner e⇥ect and
delayed stall in lift development are discussed as a result of lift and circulation measurements. The final
aim is to o⇥er insight into what unsteady mechanisms a⇥ect lift generation on a 3D wing at low Reynolds
numbers, for angles both above and below steady state stall, in order to determine if an unsteady flapping
motion could o⇥er increased lift benefits for MAV applications. This somewhat simplified test case will serve
as a foundation for further studies with more complicated 3D kinematics.

II. Materials and Methods

II.A. Facilities

Steady state force balance measurements took place in the CUED Markham Wind Tunnel, which has an
average free-stream turbulence level of 0.15%. The wind tunnel has a 1.68 m x 1.22 m x 8 m test section
and is driven by a 100 hp electric motor with a top wind speed of 60 m/s. Test cases were performed at
Re = 60, 000 which required an air speed of approximately 7.7 m/s. In order to determine the angle of
steady state stall, angles of incidence ranged from 0� < � < 30� in 5� increments.

Unsteady measurements took place in the CUED towing tank. The advantages of working in water rather
then air, aside from the simplicity of accelerating the model using the carriage setup, are the lower free stream
turbulence levels of water and the slower testing speeds required compared to air for a given Reynolds number.
The tow tank has a 1m square cross section. The central section (2m in length) is constructed of Perspex,
with an additional Perspex end window to enable PIV imaging. The desired Reynolds number of 60,000
was achieved with a towing speed of 0.48 m/s. The plate was accelerated from rest to full speed over a
streamwise distance of 0.072m, which is equivalent to 0.6c. The commanded and actual travel trajectories
(chordlengths traveled over time) are illustrated in Figure 2.

Figure 2. Unsteady experiments a) commanded velocity profile and b) commanded and actual travel trajectory

3 of 13

American Institute of Aeronautics and Astronautics

(b) Commanded and actual trajectory profile for the airo-
foil motion-Beckwith and Babinsky [25]

Figure 2.5: Kinematics for the accelerated flat plate

The velocity profile of the accelerated flat plate, shown in Fig. 2.5a, is obtained from the data of

Beckwith and Babinsky [25] via the following optimization problem

min
Pm

N∑
i=1

(
Xi −

m∑
0

(Pmt
m)

)
(2.38)

subject to the end constraints

ẊP (0) = 0, ẊP (tf ) = U∞, and ẌP (tf ) = 0 (2.39)

where XP =
∑m

0 Pmt
m represents the polynomial fit to the given data, N is the number of sample

points (X ′is) taken from Fig. 2.5b in Ref. [25] by Beckwith and Babinsky, and m is the degree

of the fitting polynomial. We used the fmincon Matlab function for solving the constrained op-

timization problem defined above. The resulting equation for the commanded and the measured
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positions respectively are

XC(t) = −8.7540t4 + 5.3376t3 − 0.0265t2 + 0.004

XM(t) = −8.3073t4 + 5.0119t3 + 0.0233t2 − 0.0002t+ 0.004
(2.40)

Because few number of “measured data” points were available for fitting, we present results for

both maneuvers; commanded and measured. In addition, we use the extended lifting line theory

[20] to account for three-dimensional effects on the lift which implies a correction factor of 0.618

based on aspect ratio AR = 4.

Figure 2.6 shows time variations of the normalized circulation and lift coefficient for a flat plate

accelerating from rest using both commanded and measured fits of the velocity profile. The plots

show agreement among all representations except that the predicted circulation and lift based on

Chapman’s Lagrangian [6] is slightly higher and shows faster convergence to the steady state

value. The lift coefficient shows that the proposed Lagrangian (Brown-Michael equation) yields

values that are closer to the experimental data of Beckwith and Babinsky [25] than both Chapman’s

Lagrangian (β = 2) and the impulse matching model of Wang and Eldredge [29], particularly

in capturing the transient peak. The large overshoot in the lift coefficient for β = 2 indicates

that the exclusion of the symmetry term (angular momentum constraint) is necessary to satisfy

the linear momentum around the vortex and the branch cut in an integral sense. In other words,

the evolution equation based on the Lagrangian L′ violates the conservation of linear momentum

around the vortex and the shedding edge. Hence, the proposed Lagrangian L is a more general

(unconstrained) Lagrangian of point vortices. It governs the dynamics of both vortices of constant

and time-varying strengths.
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(a) Time variation of the normalized vortex strength Γv

for the commanded position. The circulation is normalized
with the steady-state value ΓSS
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(b) Time variation of the normalized vortex strength Γv

for the measured position. The circulation is normalized
with the steady-state value ΓSS
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(c) Time variation of the normalized lift coefficient CL

for the commanded position
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(d) Time variation of the normalized lift coefficient CLe
for the measured position

Figure 2.6: Time variations of the normalized circulation and lift coefficient for α = 5o for the
accelerated flat plate

2.3.3 Pitching Flat Plate

In Figure 2.7, the lift coefficient versus angle of attack is shown for an airfoil pitching at a reduced

frequency k = 0.2, and compared to the experiment carried out by Granlund et al. [26] at Reynolds

number Re = 20, 000. In this case, two vortices are shed from the leading and trailing edges. The
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same trend as in the case of the starting vortex is noted. Moreover, the difference is maximum

when the angle of attack reaches 45o and approaches zero when the angle of attack reaches 90o.

We also noted that while both proposed and Chapman’s Lagrangian yielded similar dynamics for

the case of the starting vortex, they yielded different dynamics for the case of pitching flat plate.

Although the proposed Lagrangian (Brown-Michael) yielded a better agreement with the experi-

mental results than Chapman’s Lagrangian, the impulse matching results have a better agreement

with the experiment unlike the accelerating flat plate problem.

It should be pointed out that the present work is not favoring Brown-Michael model over El-

dredge’s impulse matching model or vice versa. The main outcome of this work is to provide a

variational formulation for the dynamics of unsteady point vortices, which interestingly matches

the momentum-based formulation of Brown and Michael. However, Wang and Eldredge [29]

pointed out that either model alone is not sufficient for developing reduced-order models of two-

dimensional unsteady aerodynamics. The Brown-Michael model (or equivalently its present vari-

ational version) or the impulse matching model represents only one part in the whole formulation

that also includes a shedding criterion and an auxiliary condition (Kutta-like condition). So, the

superiority of the Brown-Michael model and its variational version in predicting the lift in the

accelerating plate case does not imply a true superiority and vice versa. To reflect more on the

issues discussed in this paper, future work is recommended for other kinematics problems such as

perching and plunging motions, and verifying them against experimental data [26, 47, 48]
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Figure 2.7: Lift coefficient versus angle of attack for pitching airfoil at reduced frequency k = 0.2
and Reynolds number Re = 20, 000.

2.4 Conclusions

We investigated the potential of implementing variational principle to derive governing equations

for the interaction of unsteady point vortices with a solid boundary. To do so, we postulated a

new Lagrangian function for the dynamics of point vortices that is more general than Chapman’s.

We showed that this function is related to Chapman’s Lagrangian via a gauge symmetry for the

case of constant-strength vortices. In other words, both Lagrangian functions result in the same

steady governing equation, i.e. the Biot-Savart law is directly recovered from the Euler-Lagrange

equations corresponding to minimization of the action integral with these two Lagrangians. We

also found that, unlike Chapman’s Lagrangian, the principle of least action based on the proposed

Lagrangian results exactly in the Brown-Michael model for the dynamics of unsteady point vor-
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tices. We implemented the resulting dynamic model of time-varying vortices to the problem of

an impulsively started flat plate as well as an accelerating and pitching flat plate. For the case of

an accelerating flat plate, the resulting time history of the lift coefficient from the three models

(variational based approach for the proposed Lagrangian and Chapman’s, and the impulse match-

ing model) was compared against the experimental results of Beckwith and Babinsky. The results

showed a better agreement for the variation approach using the proposed Lagrangian. On the other

hand, the results of the impulse matching model for the pitching flat plat agree better with experi-

mental results than the those based on Chapmann’s and the proposed Lagrangian (Brown-Michael

model).



Chapter 3

Dynamic Stability of a Hingeless Rotor

Blade in Hover using Padé Approximations

In this chapter, we aimed to examine the sensitivity of using different finite-state aerodynamic

models on the flutter boundary of a helicopter rotor blade in hover. To achieve this goal, a set of

time-domain approximations for the deficiency function C ′(k,m, h) are used. The flutter solution

is obtained by assuming the deflections to be equal to a small perturbation about the nonlinear

equilibrium deflections. The deficiency function C ′(k,m, h) is represented in terms of Laplace

operator s̄ in order to represent the aerodynamic loads in a state space form. Three different

approximations forC ′(k,m, h) were used. The first one is Jones’ [49] approximation, the second is

obtained using Dowell’s [50] method and the third is based on general nonlinear least square fitting

for C ′(k,m, h) [51] obtained by imposing zero and infinite frequency limits and nonnegative poles

constraints. The final results show a very good agreement with those obtained using numerical

simulation models of the helical wake.

26
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3.1 Analysis

3.1.1 Aerodynamic Model

The expressions for the aerodynamic lift and pitching moment per unit span acting on the blade

cross section are calculated using Greenberg’s [52] extension of Theodorsen’s theory for a two-

dimensional airfoil. This extension mainly accounts for the pulsating free stream velocity seen by

blade cross-section. Figure 3.1 shows the coordinate system of the deformed blade and a section of

the rotor blade undergoing general unsteady motion of pitching ε(t), plunging ḣ(t) and pulsating

free stream motions.

(a) Coordinate system of the deformed rotor blade (b) Unsteady forces and motions of rotor blade cross sec-
tion

Figure 3.1: Coordinate system and aerodynamic forces acting on a rotating blade undergoing
plunging, pitching and pulsating motions

Assuming a small angle of attack, a small pitching angle and UP
UT
� 1, the expression for the

aerodynamic loads Lw and Lv in the w and v direction respectively and the pitching moment Mφ
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about ξ are written as [53, 54]:

Lv = ρaob[−ΩXVi(φ+ θc) + V 2
i + 2Viẇ − ΩX(φ+ θc)ẇ − Viv̇(φ+ θc)]C(k)

+
ρbCDo

2
[Ω2X2 + 2ΩXv̇]

Lw = ρaob[Ω
2X2(φ+ θc −

∫ x

0

v′′w′dx) + 2ΩX(φ+ θc)v̇ − ΩXVi − ΩXẇ − Viv̇ − Ω2Xv(βpc + w′)

+ Ω2X(βpc + w′)b(
1

2
− a) + ΩXφ̇b(

1

2
− a)]C(k)

+
ρb2ao

2
[−ẅ + ΩXφ̇− baφ̈]

Mφ = ρaob
2(

1

2
+ a)[Ω2X2(φ+ θc) + 2ΩX(φ+ θc)v̇ − ΩXVi − ΩXẇ − Ω2Xẇ

− Ω2Xv(βpc + w′)− Viv̇ + b(
1

2
− a)Ω2X(βpc + w′) + b(

1

2
− a)ΩXφ̇]C(k)

+
ρb3ao

2
[(a− 1

2
)ΩXφ̇− aẅ − b(1

8
+ a2)φ̈− 1

2
Ω2X(βpc + w′)]

(3.1)

where C(k) denotes a general deficiency function [55].

3.1.2 Padé Approximations for the lift deficiency function

Loewy’s [12] lift deficiency function, C ′(k, m̄e, h̄e) , for collective mode case is given by [55] :

C ′(k, m̄e, h̄e) =
H

(2)
1 (k) + 2J1(k)W (k, h̄e, m̄e)

H
(2)
1 (k) + iH

(2)
0 (k) + 2[J1(k) + J0(k)]W (k, m̄e, h̄e)

= F ′(k, m̄e, h̄e)+iG
′(k, m̄e, h̄e)

(3.2)

where H(2)
n is the Hankel function of the second type and Jn is the Bessel function of the first type

evaluated at the local reduced frequency k. W (k, m̄e, h̄e) is a weighting function used to account

for the vorticity shed by previous blades or revolutions. It is given by :

W (kh̄e, m̄e) =
1

ekh̄ee2πim̄e − 1
, k > 0

= 0 , k = 0

(3.3)
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where m̄e and h̄e are the frequency and wake spacing respectively normalized with respect to the

number of blades, i.e.

m̄e =
ω

Ω Nb

=
ω c/2

Ω r

r

c/2

1

Nb

= k
r̄

c̄/2 Nb

= kr̄e

h̄e =
4λi
σ

(3.4)

Next, we find an approximation, CA = FA + iGA, for C ′(k, m̄e, h̄e) in terms of s̄. The first

approximation is obtained by using Dowell’s method [50] assuming CA to be a rational function

given as CA =
∑I

i=1
ikai
−bi+ik . The method invokes the formulation of a least-squares problem as

follows : min
x

∑Np
j=1|G′(i) − GA(i)|2 subjected to a1 + a2 + a3 + ..... = F ′(∞) = 1/2 , where

the imaginary part and the zero frequency value are respectively defined as GA = −
∑I

i=1
aik

2

b2i+k
2 ,

a1 = F ′(0).

Although Dowell’s method is more accurate than Jones’, it cannot capture the high oscillatory

nature of Loewy’s deficiency function as concluded by Dinyavari and Freidmann[55]. So, there is

a need for a more general approximation. The second approximation presented here is obtained

by imposing a general rational function with no further choice or enforcing the pole values [51].

The optimization problem is then modified in comparison to that of Ref. [51] as it is subjected

to the constraint of nonnegative poles. This modification is important as the results obtained in

Ref. [56] by using the model of Ref. [51] indicated that the problem posed without a constraint

is not guaranteed to represent a stable flow,i.e. half of the poles are unstable. In other words, the

aeroelastic system cannot be represented by a state-space model since part of the poles are already

in the right-half plane.

The rational function defined herein is given as :

CA =
I∑
i=0

bis̄
i

ais̄i
(3.5)

The optimization problem whose objective is minimizing the square error of the magnitude and
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phase is defined as follows :

min
x

Np∑
j=1

(|C ′(j)|−|CA(j)|)2
+

Np∑
j=1

(|φ′(j)− φA(j)|)2 (3.6)

subjected to :

b0

a0

− 1 = 0

bI
aI
− 0.5 = 0

Re[λi(
I∑
i=1

ais̄
i)] < 0, i = 0...I

(3.7)

where |C ′(j)|, φ′(j) and |CA(j)|, φA(j) are respectively the magnitudes and the phases of Loewy’s

and approximation functions. The vector of the design variables is denoted by x ; x = bi, ....b0, ai, ...a0.

The first and second constraints are imposed to satisfy unity value of CA as the frequency k goes

to zero and 1/2 as the frequency approaches infinity. The third inequality constraint is introduced

to ensure that the resulting approximation will represent a stable flow, i.e. no instability occurs. In

other words, it has no meaning to examine the instability of our dynamical system if we introduce

the approximation with unstable poles. This constraint was not utilized in Ref. [56] as the roots of

the denominator had unstable poles. However, it perfectly fitted the exact function.

3.1.3 Structure Model

The static deformation equations are based on the model of Hodges and Dowell [53]. The blade

before and after deformation is shown in Fig. 3.1. The strain energy is given by :

U =

∫
V

E

2
(εxx)

2dV +

∫
V

G

2
[(εxη)

2 + (εxζ)
2]dV (3.8)



Ahmed A. Hussein Chapter 3 31

The equations of motion are then derived by applying Hamilton’s principle [16, 57].

∫ t2

t1

(δU − δT − δW )dt = 0 (3.9)

Where δU , δT and δW the variations of the strain energy, kinetic energy and virtual work of exter-

nal force. These variations are written as :

δU =

∫ R

0

(∫
A

[εxxδεxx + εxηδεxη + εxζδεxζ ]dηdζ

)
dx (3.10)

δT =

∫ R

0

(∫
A

ρδ~V.~V
)
dA (3.11)

δW =

∫ R

0

(Lvδv + Lwδw +Mφδφ) dx (3.12)

The expressions for the strains and velocity vector ~V are given by

εxx = u′+
1

2
v′2+

1

2
w′2−w′′[ηsin(θc+φ)+ζcos(θc+φ)]−v′′[ηcos(θc+φ)−ζsin(θc+φ)]+

1

2
[(ζ)2+(η)2]φ2

(3.13)

εxη = −(ζ +
∂λ

∂η
)φ′ = −ζ̂φ′ (3.14)

εxζ = (η − ∂λ

∂ζ
)φ′ = η̂φ′ (3.15)
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For small twist angle φ, ~rp and ~V can be written as :

~rp ≈ (X + u)îb + [v + η{cosθc − φsinθc} − ζ{sinθc + φcosθc}]ĵb

+ [w + η{sinθc + φcosθc}+ ζ{cosθc − φsinθc}]k̂b

~V =
d~rp
dt

=
∂ ~rp
∂t

+ ~ωb × ~rp =
∂ ~rp
∂t

+
(

Ωsinβpc îb + Ωcosβpck̂b
)
× ~rp

≈ (u̇− Ωv) îb +
(

(X + u)Ω + v̇ − (ηsin(θc) + ζcos(θc))φ̇
)

ĵb

+
(

Ωβpcv + ẇ + (ηcos(θc)− ζsin(θc))φ̇
)

k̂sb

(3.16)

3.1.4 Finite State Aeroelastic Model

In order to obtain the equations of motion in matrix form, the finite element approach was applied

to Hamilton’s principle (3.5). The resulting equations are nonlinear time varying equations of the

form:

[M]{q̈}+ [D1(q)]C ′(k, m̄e, h̄e){q̇}+ [D2(q)]{q̇}+ [K(q)]{q}+ [KS(q)]{q}C ′(k, m̄e, h̄e) = {F}

(3.17)

Where [M] is the mass matrix ,[D1(q)] and [D2(q)] are the damping matrices, [KS(q)] and [K(q)]

are the stiffness matrices, and {F} is the steady force vector containing terms that are independent

of the nodal degrees of freedom q. Hermite polynomials are used to represent the distribution of q

over one element [16, 16] with five degrees of freedom at each node; two bending deflections, two

slope defelctions and one twist angle.

The detailed expressions of M, D1, D2, K, KS and F are given in Appendix A.1. In order to

investigate the dynamic stability, the equilibrium conditions have to be determined first. Dropping

the time dependent terms, the trim equations are

[K(q0) + KS(q0)]{q0} = {F} (3.18)
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The solution of Eq. (3.18) is calculated using Newton-Raphson method. The initial solution is

taken to be the linear one [16]. The divergence boundary is obtained for a certain blade con-

figuration, when the determinant of the Jacobian of Eq. (3.18) is set equal to zero [54], i.e.

|J | =|∂{K(q).q+KS(q).q}
∂q | = 0. The linearized dynamic equations of motion are obtained by as-

suming that q(t) = q0 + q̃ :

[M]{¨̃q}+[D1(q0)]C ′(k, m̄e, h̄e){ ˙̃q}+[D2(q0)]{ ˙̃q}+[K(q0)]{q̃}+[KS(q0)]{q̃}C ′(k, m̄e, h̄e) = {0}

(3.19)

Introducing a new variable y =

q̇

q

 and writing the deficiency function as C ′(k, m̄e, h̄e) = N(s̄)
D(s̄)

,

Eq. (3.19) is rewritten as :

ẏ = A y + B y C ′(k, m̄e, h̄e) = A y + B y
N(s̄)

D(s̄)
(3.20)

Using canonical reduction techniques [58], Eq. (3.20) can be written in a state space form as

[59, 60] :

Ż = H Z (3.21)

The reduction steps of Eq. (3.20) to Eq. 3.21 are given in Appendix (A.2). The flutter boundary

is determined when the real part of one of the eigenvalues of the matrix H crosses the imaginary

axis. The method of normal modes is used to obtain the eigenvalues of the matrix H. The number

of the normal modes is chosen after calculating the time response for these modes.

3.2 Results and Discussion

3.2.1 Data

The blade properties are assumed to be uniform along the blade. The non-dimensional inflow

velocity is set to be a constant equal to the value of the nonuniform flow at 0.75R. A typical range
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for the collective pitch is chosen including high thrust range(θc > 15o). The center of gravity

and the tension center of the cross section coincide with the elastic axis. Dividing the blade into

six finite elements gives an acceptable accuracy for the square error resulting from solving the

nonlinear steady equations of motion ,i.e.
∑

(Error)2 < 10−5. Table 3.1 shows the square root

of the normal modes after two different time intervals. Thus only five modes are used to transform

the equations of motion to the modal space. The values of the parameters used are listed in Table

3.2.

Table 3.1: Normal modes magnitude at different time.

Tf = 5sec Tf = 100sec

3-Modes 3.1985 3.2077
4-Modes 3.1992 3.2084
5-Modes 3.1993 3.2085
6-Modes 3.1993 3.2085

Table 3.2: Rotor Blade Parameters.

ωv = [0.5 2.5] θc = [0o 25o]
ωF = 1.15 k2

A/k
2
m = 1.5

ωφ = 2.5,2.9,3,4,5 km/R = 0.025
ao = 2π k2

m1
/k2

m2
= 0

CDo = 0.01 c/R = π/40, 0.09722
βpc = [0o 7o] γ = 5, 6.308

For the optimization problem, a rational polynomial of order eight is used, i.e. i = 8. This

number is based on the Bode plot [58] of the approximation function as discussed in details in Ref.

[51]. The approximation must have enough poles and zeros to capture the oscillatory part of the

deficiency function at low reduced frequencies.
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3.2.2 Results
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Figure 3.2: Loewy’s Function and it’s Pade Approxiamtions

The results of the constrained optimization of Eq. (3.6) for three different cases of rotors are

shown in Figure 3.2. The radial positions and the chord ratios used for evaluating the value of

C ′(k, m̄e, h̄e) are r = 0.75R, r = 0.8R, r = 0.3R and c/R = 0.079, c/R = 0.1334, c/R = 0.01



Ahmed A. Hussein Chapter 3 36

respectively. Because the optimization algorithm is so sensitive to the initial condition, the genetic

algorithm is used to determine a good initial guess for the coefficients in order to start from a

feasible point. Tables 3.3-3.5 list the poles and zeros for each rotor case. As seen from Figure 3.2,

the rational polynomial is capable of capturing the oscillation at lower reduced frequency and the

numerical values of poles and zeros indicates that the constraints are satisfied.
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Figure 3.3: Divergence boundary represented as a collective pitch θc versus non-dimensional lead-
lag frequency ωv.

3.2.3 Discussions

Regarding the blade equilibrium, the trim deflections are obtained by solving the nonlinear steady

equations of motion (3.18). Figure 3.3 represents the effect of varying the torsional stiffness and
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the aerodynamic offset. The divergence phenomenon is observed to be more critical than flutter.

The unstable region increases as the torsional stiffness decreases or the offset increases. The trends

of the results for these divergence boundaries agree well with that of Ref. [54], although they used

a slightly different blade parameters. The results in Ref. [16], shown in Fig. 3.3, indicated that

for ωφ = 3 and xA = 0.1, which was based on a large defection theory, the domain of θc versus

ωv are statically stable and the flutter phenomenon is more critical. It means that the degree of

nonlinearity of the structure model needs to be investigated.

Figure 3.4 depicts the flutter boundary for zero aerodynamic offset and for different approximations

of the deficiency function. The quasi steady results are in good agreement with those of Ref.[53].

The slight difference between the present results and those of Ref. [16] is that because the structure

model therein was based on large deflection theory. For collective pitch θc > 10o, the upper

unstable region expands as the type of the approximation of the deficiency changes. In other

words, the unsteady aerodynamics has a destabilizing effect at higher angles of attack.The three

approximations yields the same upper branch as their real and imaginary values mostly coincide

on the range k > 0.5 as seen in Fig. 3.2. Ref. [61] showed the same trend for the upper bound but

for the case of βpc = 0, xA = 0.2, ωφ = 6.17 and for a linearized static equilibrium conditions.

On the other hand at low collective pitch θc < 10o, the unstable bubble region arised from the

dihedral effect βpc, shrinks from both sides. The bubble region shrinks from the right side from

ωv = 1.75 to ω = 1.48 when any one of the approximations are used and shrinks from left side

ωv = 0.8 to ω = 1.25 only when NONLSQ approximation is used. The surprising result is that

the unsteady aerodynamics has a stabilizing effect at low collective pitch.

At low collective pitch the behavior is quite different from that at a higher one. The shrinkage

from the right side can be interpreted from Fig 3.2 as the unsteady aerodynamics predicts half

the value of the unsteady loads compared to quasi steady case for k > 0.5. For the left part, the

shrinkage may be interpreted as Jones’ and Dowell’s approximations can’t capture the oscillatory

nature of Loewy’s function at low reduced frequency of k < 0.5. This means that the oscillatory

behavior of Loewy’s function at low reduced frequency has more stabilizing effect as the lead-lag
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frequency approaches the soft stiffness limit. Similar trends, but reversed to that shown in the

present analysis, for these two different effects of the unsteady aerodynamics as a function of the

lead-lag frequency can be found in Ref. [62] for a simple coupled flap, lag rotor.
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Figure 3.4: Flutter Boundary
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Figure 3.5: Flap, lead-Lag and torsion modes for two blade configurations

Figure 3.6: Lead-lag damping for four blade rotor, γ = 6.308, c/R = 0.09722, βpc = 0
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Figure 3.7: Lead-lag damping for two blade rotor,γ = 5, c/R = π/40, βpc = 0

The root-locus of flap, lead-lag and torsion modes are depicted in Fig. 3.5 for the parameters

shown on the top of the figure. The collective pitch θc is varied from 0o to 25o. The flapping mode

develops a considerable change in the damping ratio but tends to approach the values obtained by

the quasi steady approximation as collective pitch increases. This can be interpreted as the real part

of the deficiency function F decreased to far values from the unity, the quasi steady limit, while

having an oscillatory behavior at k < 0.5. This result agrees well that predicted by Loewy[12]

for the two dimensional case, i.e.∂CL/∂(ḣ/U) = 2πF ′. Moreover, the torsion mode for the

three unsteady approximations travels half the distance of the quasi-steady case. This means that

the unsteady circulatory components of the pitching moment in Eq. (3.1) develop an additional

positive torsional damping. This effect cannot be directly predicted as the moment arm is zero, i.e.

xA = 0. Furthermore, at higher collective pitch, the lead-lag mode for the three approximations

enters the right half plane at earlier value of collective pitch compared to the quasi-steady case.

It’s also observed that the instability happens at low collective pitch vanishes when any type of the

approximation is used for the case of βpc = 2.86o as can be seen form Fig. 3.4 for the case of

ωφ = 2.5. Also the damping part calculated using C ′(k) decreased to a lower value in comparison

to the quasi steady result, i.e. ∂CL/∂(ḣ/U) = 2πF ′.

Figures 3.6 and 3.7 shows the damping part of the lead-lag mode versus collective pitch compared

to the results obtained by Ref.[63] and Ref. [64] respectively. The present results calculated using

any approximation matches well with those of Ref. [63, 64] for collective pitch below 6o. The data

from Ref. [63] and Ref. [64] were available from 0o collective pitch up to 12o and 20o respectively.
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From Fig.3.6, the difference between the quasi steady results is mainly because the structure model

used in Ref. [63] was based on large deflection theory. The quasi-steady, Johns’, Dowell’s and

NONLSQ approximations give an instability boundary at collective pitchs θI of 22o, 15o, 13o and

12o respectively. These instability values obtained using the three approximation rather than the

quasi-steady one are more conservative than that observed by an extrapolation of the result of Ref.

[63], which was obtained using the unsteady vortex lattice method (UVLM),i.e. θI = 17o.

For the two bladed rotor case shown in Fig. 3.7, the quasi-steady, Johns’, Dowell’s and NONLSQ

approximations respectively gives 21o, 14o, 14o and 15o for the instability pitch value θI . The re-

sults of Ref. [64] were obtained using boundary element method (BEM) for predicting the unsteady

loads. Their results showed to be more conservative than obtained by 2-D theory, i.e. θI = 10o,

which reveals the power of the numerical technique used to model the unsteady aerodynamic loads.

Unstable

Stable

Unstable

0 1 2 3 4 5 6 7
0

5

10

15

20

25

βpc

θc

xA 0 , ωϕ 2.5 , ωF 1.15 , ωv 1.5

Quasi

Jones

Dowell

NONLSQ

Hodges & Ormiston

Figure 3.8: Beta Effect

Figure 3.8 shows the effect of varying the collective pitch θc versus the precone angle βpc compared

to Ref. [65]. The same behavior to that in Fig. 3.4 is obtained except that the three approximations

for the deficiency function yields the same bubble region. This is because the effect of unsteady
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aerodynamic approximation at low collective pitch is coupled with the lead-lag frequency ωv. The

stability boundary seems to be sensitive to the type of unsteady aerodynamics even if xA = 0. This

result contradicts with that of Ref.[16] as their boundaries, which were obtained using p−k method,

appeared to be insensitive to unsteady aerodynamics. The results from Fig .3.5-3.8 reveal the

fact that using time-domain approximations of the deficiency function for predicting the dynamic

instability boundaries is more reliable than p-k method.

Table 3.3: Poles and Zeros for r̄e = 3, h̄e = 4

Zeros Poles
N(ik) D(ik)

-0.0623 ±i 0.3324 -0.0934 ±i 0.3382
-0.0825 ±i 0.395 -0.4738 ±i 0.0266

-0.6394 ±i 0.2578 -0.0941 ±i 0.6349
-0.9725 ±i 25.515 -0.0515 ±i 25.395

Table 3.4: Poles and Zeros for r̄e = 1.5, h̄e = 1.57

Zeros Poles
N(ik) D(ik)

-0.1442 ±i 0.7251 -0.3848 ±i 0.4133
-0.6975 ±i i 0.5834 -0.2567 ±i 0.8313
-0.1746 ±i 1.4578 -0.2138 ±i 1.4558

-0.05247 -0.062
0 0

Table 3.5: Poles and Zeros for r̄e = 5, h̄e = 5.43

Zeros Poles
N(ik) D(ik)

-0.0309 ±i 0.1977 -0.0455 ±i 0.1986
-0.0555 ±i 0.3816 -0.082 ±i 0.3756
-0.0527 ±i 0.5403 -0.0527 ±i 0.5355

-0.5924 -0.2988
-4362 -4330.2
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3.3 Conclusions

In this chapter, different Padé approximations for Loewy’s deficiency function were used to inves-

tigate the dynamic stability of a hovering rotor blade. After linearizing the equations of motion

about the nonlinear trim deflections, the flutter boundary was found in time domain by approxi-

mating the lift deficiency function as a rational polynomial in terms of Laplace operator. Next, the

static stability results are summarized as :

1) For offsets xA > 0, the divergence boundaries, obtained by solving the nonlinear trim equations

are more critical than flutter. This result agrees with most of the previous work but highly differs

from that obtained using large deflection theory. In other words, when the structure model is based

on a moderate deflection theory the divergence boundary, obtained by solving the nonlinear trim

equations, is found to be more critical than flutter. On the other hand, when the structure model

is based on the a large deflection theory no divergence boundary exist and the flutter phenomenon

due to torsional instability is more critical.

The results shown for the flutter boundaries are in good agreement following the same behavior

obtained by numerical simulations. The time-domain unsteady aerodynamic model has different

effects on the stability boundaries summarized as follow :

2) For the case of zero offset xA = 0 and βpc = 2.86o, the unsteady aerodynamic has a two counter

effects associated with varying both collective pitch and lead-lag frequency.

3) For lead-lag frequency ωv ∈ [1.2 2], the three aerodynamic approximations have the same

effect of destabilizing and stabilizing the lead-lag mode at high and low collective pitchs respec-

tively.

4) For ωv < 1.2, the NONLSQ approximation of Loewy’s function has a stabilizing effect on the

bubble region at low lead-lag frequency. This effect is not observed when using any approximation

other than NONLSQ, because they didn’t capture the oscillatory behavior as NONLSQ did.

5) For the case of zero offset xA = 0, ωv = 1.5 and varying precone βpc ∈ [0 7], the three

approximations gives the same effect on stability boundary as result 3.

6) More flapping vibrations are induced as the damping part of the flapping mode decreased sig-
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nificantly, i.e. ∂CL/∂(ḣ/U) = 2πF ′.

7) The unsteady circulatory terms in the pitching moment equation augment a postive damping

which decreases the overall torsional damping.

8) The damping part of the lead-lag mode decreased as the type of the aerodynamic approxima-

tion is used, leading to a lower values of instability limits. These values are in good agreement

compared to that obtained by BEM and UVLM numerical solutions.



Chapter 4

Optimal Tail Kinematics for Fish-Like

Locomotion using the Unsteady Vortex

Lattice Method

4.1 Introduction

Motivated by the desire to understand and characterize fish, engineers have long considered modes

of such motions to inspire the design and improvement technologies for human need. Earlier

considerations of the nature of fish propulsion have been brought into attention by Lindsey [66],

that was followed by more detailed work by Bozkurttas et al. [67]. The interest in understanding

the generation of propulsive forces was mainly inspired by impressive structural and kinematic

capabilities. Further detailed work since Borelli has been diversified, with descriptions shared by

Sir James Gray (1933ac), Lighthill [68], Webb Blake [69], Maddock et al. [70], and Triantafyllou

et al. [71] among others. Published literature included experimentally and analytically detailed

analyses of patterns of body, morphological adaptations and their effects on flow patterns that have

helped scientists understand how propulsion is produced.

45
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In swimming, fish vary their shape to generate fluid dynamic forces needed for propulsion and

control. The oscillating tails and fins are able to generate additional thrust, and may also be used

to balance roll and yaw moments generated during locomotion. Our ultimate goal is to develop an

understating of the underlying physics of fish locomotion based on a three-dimensional potential

flow model that can be used to support a geometrically controlled framework for the design and

control of pisciform swimmers. This would be achieved using periodically forced mechanical

systems, and compromised of a series of rigid hydrofoils and flaps. The ultimate question to be

answered is: For what parameter values (Reynolds number, frequency of oscillation, number of

links, and model parameters) will the proposed unsteady flow model capture forces and moments

with sufficient accuracy to support geometric control design and analysis?

Towards that objective, we investigate the optimal kinematics of fish-tail motion. We considered

the oscillatory type of fish under the action of hydrodynamic loads based on two-dimensional

theory. Later, we used the three-dimensional theory to verify the two-dimensional results. The

base body is considered as a rigid part and the tail is allowed to flap either flexibly or rigidly. The

flexible motion of the tail is modeled in a two different ways. The first one the flexible motion

of the tail assumed to be a combination of a simple harmonic motions in time using the first two

mode shapes of Euler-Bernoulli beam. The second one the flexible motion of the tail is determined

by solving the fluid-structure coupled problem between the tail motion and the hydrodynamic

loads acting upon it. The hydrodynamic loads are calculated using the two-dimensional and three-

dimensional unsteady vortex lattice model (UVLM). The propulsive efficiency versus the Strouhal

Number is depicted for the three cases.

4.2 Geometrical Model of the Tail

The two-dimensional fish is modeled as a two bodies connected at one point as shown in Fig.

4.1. The base body and tail are modeled as a rigid ellipse and a flexible beam respectively. The

body and the tail are moving with the same uniform velocity U∞. The input to the tail is angular
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displacement θ(t), and is to be determined by minimizing the hydrodynamic power subjected to

zero net thrust on the fish body. For the rigid beam case the deflection w is neglected, i.e. w = 0,

while for the first flexible case, active flexibility, it is taken to be a simple harmonic combination

of the first and second modes of the beam [3] as

Body

𝑼∞

Tail
𝒁

𝑿

𝒘(𝒙, 𝒕)

Optimal Wave Form 
is Unknown

𝒙

𝒛

𝜽 𝒕 = 𝜽𝒎𝒂𝒙𝒔𝒊𝒏(𝝎𝒕)

𝑷

Figure 4.1: Simple model of the fish-tail of oscillatory type.

w(x, t) = A1sin(ωt)Ψ1(x) + A2sin(ωt+ Φ)Ψ2(x) (4.1)

whereA1 andA2 are the amplitude of the first and second mode respectively, and ω is the frequency

of oscillation, i.e. ω = 2πf . For the case of passive flexible beam, the tail deflection is determined

as follows. The position of a general point P on the tail and the angular velocity of the tail can be

defined as

~rp = x̂i + wk̂ (4.2)
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~ω = θ̇ĵ (4.3)

The inertial velocity and accelration can be computed as follows :

~V =
d~rp
dt

=
∂ ~rp
∂t

+ ~ω × ~rp

= θ̇wî +
(
ẇ − θ̇x

)
k̂

(4.4)

~a =
d~V
dt

=
∂~V
∂t

+ ~ω × ~V

=
(
θ̈w + 2θ̇ẇ − θ̇2x

)
î +
(
ẅ − θ̈x− θ̇2w

)
k̂

(4.5)

Applying the equilibrium conditions on a general element centered at the point P in x and z

directions, we get

T (x) =
mθ̇2

2
(R2 − x2) +m

∫ R

x

(
θ̈w + 2θ̇ẇ

)
dx (4.6)

∂2

∂x2

(
EI

∂2w

∂x2

)
− ∂

∂x

(
T (x)

∂w

∂x

)
+m

(
ẅ − θ̈x− θ̇2w

)
= FH(w, ẇ) (4.7)

The instantaneous tail dispacement w(x, t) is determined by the solving the coupled equations of

motion defined in Eq. (4.6) and Eq. (4.7) according to the flowchart shown in Fig. 4.6. T (x) is the

tension in the tail due to the angular rotation θ(t). E and I are the modulus of elasticity and moment

of inertia of the tail respectively. FH(w, ẇ) is the external hydrodynamic loads generated on the

tail by the motion θ. The structural and hydrodynamic loads are coupled through the presence of

the variable w(x, t) in both sides. The hydrodynamic forces and moments generated by the tail

motion are calculated using the unsteady vortex lattice method (UVLM) [18, 19, 72–76]. The

calculation of these loads are defined in the next section.
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4.3 Hydrodynamic Model

In the first two sub-sections the two and three-dimensional unsteady vortex lattice method are

introduced. In the last subsection, the load and power calculations are discussed for a general

three-dimensional case. The two-dimensional version of the loads are then just a special case of

those expressions.

4.3.1 Two-Dimensional Unsteady Vortex Lattice Model

The tail section can move and rotate with a velocity V and angular velocity θ̇ respectively. As

shown in Fig. 4.2, the tail is replaced by a vortex sheet of N bound vortices Γbi . At each time

step, a vortex is released from the trailing edge Γwk . The Kutta condition is satisfied by placing

the vortex at the quarter chord of each panel and applying the no-penetration boundary condition

at the three quarter point of each panel [18, 19]. the strength of the shed vortex is determined by

applying Kelvin circulation theorem at each time step, i.e. d(
∑N

i=1 Γbi +
∑Nw

k=1 Γwk)/dt = 0. The

no-penetration boundary condition is defined as

(VB + VW − VA).ni = 0 (4.8)

where ni is the normal vector to the body of panel i. VB, VW , and are the velocities induced by

the bound vortices, wake vortices at panel i. VA is absolute motion of the body at apnel i. From

Figure 4.2, the absolute velocity of any point on the body is given by

VA = V +
∂ri
∂t

+ θ̇jb × ri (4.9)
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The velocities induced by the body and wake vortices are calculated using the Biot-Savart law. In

general, the induced velocity at point ro by a vortex of strength Γ at a point r is given asuw
 =

Γ

2π|(r − ro)|2

 z − zo
−(x− xo)

 (4.10)

Using Eq. (4.10), the no-penetration boundary condition in Eq. (4.8) is re-written as

[
A
] Γb

Γwk

 =
{
VA.n

}
(4.11)

where Ai,j = (u,w)i,j.ni, is the normal component of the velocity induced by a vortex j of unit

circulation at the control point of panel i. A is called the influence coefficient matrix. Equation

(4.11) is an n equations in n + 1 unknowns. The n + 1 additional equation is given by the Kelvin

condition defined as
n∑
i=1

Γkbi + Γwk =
n∑
i=1

Γk−1
bi

(4.12)

Now Equations (4.11) and (4.12) are now a closed set of equations that are solved at each time

step, t = k∆t, to determine the strength of the bound vortices Γkbi and the shedding vortex Γwk .
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Figure 4.2: Discrete vortex model of fish tail using 2D UVLM.

Since the wake is force free, the wake vortices are allowed to move with the local fluid velocity.

This is done prior to moving to the next time step. The change in the position of each wake vortex

is calculated as

(∆Xk,∆Zk) = (Uk,Wk)∆t (4.13)

where (Uk,Wk) are the local velocity at each wake vortex induced by the presence of the body and

other wake vortices. Then the new position of the wake vortex is given by a first order Euler time

scheme as

rk(t+ ∆t) = rk(t) + (∆Xk,∆Zk) (4.14)
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4.3.2 Three-Dimensional Unsteady Vortex Lattice Model

In three dimensional, the tail is represented by an Nx ×Ny bound vortex rings. At each time step,

the trailing vortex rings leave the tail. The boundary condition defined in Eq. (4.8) still holds as

(VB + VW − VA).nij = 0 (4.15)

where nij is the normal vector to the body of panel i, j and is calculated from Figure 4.4 as

nij =
r12 × r14

|r12 × r14|
(4.16)

VB, VW are the velocities induced by the bound and wake vortex rings at panel i, j. VA is absolute

motion of the body at panel i, j. From Figure 4.5, the absolute velocity of any point on the body is

given by

𝛤𝑖,𝑗
𝑘

𝑃1

𝑃2
𝒓𝟏𝟐

𝑃

𝜃2

𝜃1

𝑽𝒊𝒏𝒅

𝒆

ℎ

Figure 4.3: General Vortex Line in the three dimension.
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VAi,j = Vi,j +
∂rij
∂t

+ (φ̇ib, θ̇jb, ψ̇kb)× rij (4.17)

The transformation of rigid body velocity of panel i, j, Vi,j , between body and inertial frame is

defined as
Ub

Vb

Wb

 =


cosψ sinψ 0

−sinψ cosψ 0

0 0 1



cosθ 0 −sinθ

0 0 1

sinθ 0 cosθ




1 0 0

0 cosφ sinφ

0 −sinφ cosφ



U

V

W

 (4.18)

where φ, θ, and ψ are the rotations about ib, jb, and kb respectively. To calculate VB and VW , the

velocity induced by a general vortex line as defined in Figure 4.3 is given by

Vind =
Γki,j
2πh

(cosθ1 − cosθ2) e (4.19)

Then the velocity induced by a vortex ring, VB or VW , will be the summation of four connected

vortex lines as shown in Figure 4.4.
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Figure 4.4: General Vortex Ring in the three dimension.

The Kutta condition in three dimension is satisfied by shedding the trailing edge vortices with the

last time step value of the trailing bound vortices as shown in Figure 4.5. In addition, there is no

need to introduce an additional equation to satisfy the Kelvin condition. This is due to the nature

that vortex rings form a closed loop and each parallel lines that form this ring are of opposite and

equal vorticity magnitude as seen in Figure 4.4. Using Eq. (4.19), the no-penetration boundary

condition in Eq. (4.15) is re-written as

[
A
]{

Γb

}
=
{
VA.n

}
(4.20)

where Ai,j = (u, v, w)i,j.nk,l is the velocity induced by the vortex ring k, l of unit circulation at

the control point of the vortex ring i, j. Equation (4.20) is an Nx×Ny equations in Nx×Ny which

are the bound vortices, i.e. Γi,j . The vortex rings are allowed to move with the local fluid velocity

since they are force free. The change in the position of the corner points of each wake vortex ring
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is calculated as

(∆Xk,∆Yk,∆Zk) = (Uk, Vk,Wk)∆t (4.21)

Then the new position of the vortex ring is given by a first-order Euler time scheme as

rNx,j(t+ ∆t) = rNx,j(t) + (∆Xk,∆Yk,∆Zk) (4.22)

Kutta Condition

𝒙𝒃

𝒛𝒃
𝒚𝒃

𝑿

𝒁
𝒀 𝒓𝒊𝒋

𝝓

𝝍

𝜽

Figure 4.5: Discrete vortex model of fish tail using 3D UVLM

4.3.3 Loads and Power Calculation

The local lift and drag components at each panel are given by [19],

Li,j = ρdy

(
||VAi,j ||(Γi,j − Γi−1,j) + dx

∂

∂t
(
Γi,j + Γi−1,j

2
)

)
cosαi,j (4.23)
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Di,j = ρdy

(
−(Wind +Wwake)(Γi,j − Γi−1,j) + dx

∂

∂t
(
Γi,j + Γi−1,j

2
)sinαi,j

)
(4.24)

where ||VAi,j || is the magnitude of the absolute velocity of the panel i, j, αi,j is the angle of attack

of the panel i, j relative to the free-stream direction, and Wind, and Wwake are the induced velocity

by the stream-wise vortex lines and wake vortices respectively. The angle of attack is calculated as

αi,j = tan−1

(
VAi,j .ni,j

VAi,j .τi,j

)
(4.25)

These local lift and drag forces are acting along the local lift and drag unit vectors who are given

by

elifti,j = Ti,j.T
T
αi,j
.Ti,j.ni,j

edragi,j = Ti,j.T
T
αi,j
.Ti,j.τi,j

(4.26)

where the matrices Tαi,j and Ti,j are given by

Tαi,j =


cosαi,j sinαi,j 0

−sinαi,j cosαi,j 0

0 0 1

 (4.27)

Ti,j =
[
τi,j ni,j qi,j

]
(4.28)

where qi,j is calculated as

qi,j = τi,j × ni,j (4.29)

The total force vector is then given as

F =

Nx,Ny∑
i,j

Fi,j =

Nx,Ny∑
i,j

(
Li,jelifti,j +Di,jedragi,j

)
(4.30)
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where the components in the X and Z are the total drag and lift force respectively. The input

aerodynamic power in then calculated as

Pin =

Nx,Ny∑
i,j

(
(Fi,j.ni,j)(VAi,j .ni,j)

)
(4.31)

and the output power used to move the fish in forward motion is defined as

Pout = (F .ix)U∞ (4.32)

The propulsive efficiency is then given as

η =
P̄out
P̄in

(4.33)

where (̄) is refers to the average over the number of tail flapping cycles. In the next section, we are

discussing the finite-element approach that is used to solve the coupled problem between the tail

structure and hydrodynamic loads generated by the tail motion.

4.4 Finite Element Model of the Coupled Problem

The finite element approach is applied to Eq. (4.7). The nonlinear term in the tension T (x) is

neglected [53], i.e. T (x) ≈ mθ̇2(R2 − x2)/2. The resulting equations are nonlinear time-varying

of the form:

[M]{q̈}+ [K]{q} = {F(q, q̇)} (4.34)

where [M] is the mass matrix [K] is the stiffness matrix, and {F(q, q̇)} is the time-dependent

forcing vector containing terms that are dependent of the nodal degrees of freedom q resulting

from the UVLM and the inertia loads. Hermite polynomials are used to represent the distribution

of q over one element [16] with two degrees of freedom at each node, i.e. q = {w ∂w/∂x}T . The
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Mass and Stiffness matrices are calculated as follows:

[M ] =

1∫
0

(Nw)TNwdξ

[K] =

1∫
0

(
(N ′′w)TN ′′w +

mθ̇2

2
(N ′w)TT (ξ +Xi)N

′
w −

mθ̇2

2
(Nw)TNw

)
dξ

{F (q, q̇)} =

1∫
0

(
NT
wFH(q, q̇) +NT

w θ̈ ξ
)
dξ

(4.35)

where L is the element size, ξ = x/L is the non-dimensional local position, m is the tail mass

per unit length, ( )′ = ∂/∂ξ is the derivative with respect to ξ, and Nw is the Hermite polynomial

shape function defined as

Nw = {1− 3ξ2 + 23, Lξ(1− xi)2, ξ2(3− 2ξ), −Lξ2(1− ξ)}T (4.36)

The coupling between the structure and the hydrodynamic loads appears in F (q, q̇) which is de-

termined using the UVLM. The equations of motion (4.34) are integrated using Newmark method

[7]. The system of equations need to be solved for q, and q̈ at time m+ 1 are defined as

[A1]{qm+1} = {R1(qm+1, q̇m+1)}

[A2]{q̈}
m+1

= {R2(qm+1, q̇m+1)}
(4.37)

where the matrices and right-hand side vectors are defined as

[A1] = [M ] + α∆t[C] +
1

2
γ(∆)2[K]

[A2] = [M ] + α∆t[C]

(4.38)
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{R1} = ([M ] + α∆t[C])

(
{q}m+1 + {q̇}m+1∆t+

1

2
(1− γ)(∆)2{q̈}m+1

)
+

1

2
γ(∆)2

(
{F (qm+1, q̇m+1} − [C]({q̇}m+1 + (1− α)∆{q̈}m+1)

)
{R2} = {F (qm+1, q̇m+1)} − [C]

(
{q̇}m+1 + (1− α)∆{q̈}m+1

)
− [K]{q}

(4.39)

The velocity term {q̇}m+1 is calculated using the following

{q̇}m+1 = {q̇}m + (1− α)∆t{q̈}m + α∆t{q̈}m+1 (4.40)

Equation (4.37) is re-written in terms of q and q̇ using Eq. (4.40) as

[A1]{qm+1} = {R1(qm+1, q̇m+1)}

[A2]{q̇}
m+1

= {R3(qm+1, q̇m+1)}
(4.41)

where {R3(qm+1, q̇m+1)} is defined as

{R3(qm+1, q̇m+1)} = α∆t{R2(qm+1, q̇m+1)}+ [A2] ({q̇}m + (1− α)∆{q̈}m) (4.42)

The proof of the Newmark method are discussed in details in Refs [4, 7]. The loosely coupling can

be defined as follows. At each time step, an initial position of the tail motion q(tm0 ) is assumed.

Then the hydrodynamic loads, R1 and R3, are calculated based on this configuration. A local

iteration is performed until the difference between two successive tail configurations are within

the defined convergence criteria. On the other hand, to solve Eq. (4.41) using the strong coupling

method, it is re-written as a system of algebraic equations as

F (z) =

A1 0

0 A2

{q}m+1

{q̇}m+1

−
{R1}

{R3}

 (4.43)

where {z} = {{q}m+1, {q̇}m+1}T . The local iteration is performed using the Newton-Raphson
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method to solve for the variables at k + 1 local iteration as

zmk+1 = zmk+1 −
(
∂Fi
∂zj
|zmk

)−1

F (zmk ) (4.44)

The convergence criteria is defined by the displacement vector q for both loosely and strong cou-

pling as
||qmk+1 − qmk ||
||qmk+1||

≤ ε (4.45)

Geometry, Kinematics and Material 
Properties 

Transform PDE to ODE using 
Discretization 

Solve Nonlinear ODE 

using NewMark Method

Convergence Criterion Test 

No

Yes

Calculate Loads CL, CT, CP, Efficiency

Stiffness, Mass Matrices

Governing Equations

Discretized Equations with Time 
Varying Coefficients

Hydrodynamic Loads from Numerical 

Simulation of the Fluid Flow

Optimal Operational 
Parameters

Flexible Tail 
undergoing pitching 

oscillation

Wake simulation 
behind the flexible tail

Figure 4.6: Flowchart for the solution of UVLM

When convergence is reached, the tail configuration at the next time step is set to be the one form

the last local iteration, i.e. q(tm+1
0 ) = q(tmk+1). The procedure used for the local iteration and

solving for the instantaneous tail position w is shown in Figure 4.6. A comparison between the

rate of convergence between Newton-Raphson and loosely coupling with under relaxation factor

Θ = 0.1, is shown in Figure 4.7. It is clearly seen that the Newton-Raphson has much steeper

rate of convergence than the loosely coupling method. In addition, the loosely coupling method
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converges to a different steady-state value for the maximum deflection of the beam.
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Figure 4.7: Convergence history using 3D UVLM

4.5 Numerical Data and Results

The values of the tail geometry and material properties used in this study are defined in Table

4.1. The natural frequencies of different tail configurations are calculated in vacuum as given in

Table 4.1. In this study, we made some assumptions to simplify the problem. The flexibility in

the spanwise direction is neglected. For the 3D ULVM, no vortices are shed from the tail tips.

This is not the situation in a general case, i.e. high angle of attack. In addition, only half of

the tail is solved to use the symmetrical nature of the problem. We chose a five elements in the

chordwise direction based on the efficiency convergence in Figure 4.8. A change of less than 1%

in the efficiency is noticed which motivated the use of chordwise panels of Nx = 5 and time step

of ∆tU∞/C = 1/(2Nx + 1). The code is written using C++ and compiled to run on Windows

platform. The code was run on a desktop computer of i5 processor and 4 GB Ram. The CPU time

taken to solve the coupled problem and reach a steady-state to calculate the efficiency points in

Figure 4.8 are 1, 2.5, 3, 4 hours for Nx of 4, 5, 8, and 10 respectively.
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Table 4.1: Tail Parameters

Parameter Value
AR 1

θmax(deg) 8
ω1(Hz) 85.55, 92.4, 98.78, 110.4

4 5 6 7 8 9 10

N
x

0

5

10

15

20

25

η

Figure 4.8: Propulsive efficiency versus number of chordwise panels with spanwise panels of
Ny = 10.

Figure 4.9 shows the thrust and power coefficients, and propulsive efficiency versus Strouhal num-

ber for different cases of rigid and active and passive flexible tails using the 2D UVLM for the

hydrodynamic load calculation. The thrust coefficient results show that the passive flexible case

give more thrust than using mode 1 or 2 or a combination of both. On the other hand, the passive

active flexible cases require more power to keep the almost the same propulsive efficiency. Look-

ing at Figure 4.9c, the result suggested that the passive flexible case introduce a slight increase in

the propulsive efficiency. However, the inconsistency between the passive and active flexible cases

suggested that the two-dimensional UVLM is not suitable to model the chordwise distribution of

the hydrodynamic loads at this low aspect ratio, i.e. AR = 1. To overcome this drawback, the

three-dimensional UVLM is used to model the hydrodynamic loads.
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(c) Propulsive Efficiency versus Strouhal number.

Figure 4.9: Thrust, and power coefficients , and propulsive efficiency versus Strouhal number for
the tail geometrical parameters given in Table 4.1 with grid of Nx = 5 using 2D UVLM. The
passive flexible tail considered here is for ω1 = 85.55Hz

Figure 4.10 shows the thrust and power coefficients, and propulsive efficiency versus Strouhal

number for the rigid and passive flexible for different tail flexibilities using the 3D UVLM for

the hydrodynamic load calculation.. The natural frequencies of these tails in vacuum are given

in Table 4.1. The structural grid used is 4 elements, and the hydrodynamics grid are Nx = 4,

Ny = 5. As seen from Figure 4.10c, the more the flexibility increases the more the propulsive

efficiency increases. Unlike the results using the two-dimensional version of the UVLM, the thrust
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and power coefficients shown in Figure 4.10(a,b) indicate that the flexible tail gives more thrust

and requires slightly more power as the flexibility increases. The same results obtained for a grid

of Nx = 5 and Ny = 10 are shown in Figure 4.11. The same behavior of efficiency improvement

is noticed with slightly change in the values as discussed in Figure 4.8.
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Figure 4.10: Thrust, and power coefficients , and propulsive efficiency versus Strouhal number for
the tail parameters given in Table 4.1 with grid of Nx = 4, and Ny = 5 using 3D UVLM.
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Figure 4.11: Thrust, and power coefficients , and propulsive efficiency versus Strouhal number for
the tail parameters given in Table 4.1 with grid of Nx = 5, and Ny = 10.

The time histories of the lift, thrust, and power coefficients at the optimal efficiency for the flexible

tail of ω1 = 85.55 are depicted in Figure 4.12 using the 3D UVLM. As seen from the figure, the

mean value of the lift coefficient is zero since the flapping of the tail is of a symmetrical value. The

negative value of the mean thrust coefficient indicates that the net force in x direction is pointing

to the left, i.e. positive thrust. The sign of the power coefficient is consistent with the thrust

calculation such that it leads to a positive values of the propulsive efficiency.

The deflection and velocity of the trailing edge of the tail are shown in Figure 4.13. The maximum
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deflection is about 0.7% of the chord length. Also, the maximum the trailing edge velocity does not

exceed 5% of the fish traveling speed, i.e. żtip < 5%u∞. As seen from Figure 4.13, even though

there is an overshoot in the starting values of the deflection and velocity, the problem reached a

steady-state solution in a few chord travels. This is attributed to the use of the strong coupling

method, i.e. Newton-Raphosn method for the local-iteration. This fast convergence behavior is

shown in Figure 4.7.
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(c) Power coefficient versus non-dimensional time.

Figure 4.12: Time histories of lift, thrust, and power coefficients for the optimal Strouhal number,
St∗ = 0.19, with grid of Nx = 5, and Ny = 10.
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(a) Trailing edge deflection versus non-dimensional time.
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(b) Trailing edge velocity versus non-dimensional time.

Figure 4.13: Time histories of deflection and velocity of the trailing edge for the optimal Strouhal
number, St∗ = 0.19, with grid of Nx = 5, and Ny = 10.

4.6 Conclusion

In this chapter, we solved the fluid-structure interaction problem described by the hydrodynamic

loads generated by the motion of a flapping fish tail. We considered a three different cases when

using the two-dimensional UVLM. The cases are rigid, active, and passive flexible. The results

show that the passive flexible case introduce some enhancement in the propulsive efficiency. How-

ever, these improvement was not supported by those of the active flexible ones. To overcome

this inconsistency, we used the three-dimensional UVLM to accurately model the hydrodynam-

ics chordwise and spanwise load distributions on the tail. The results showed that the more the

flexibility increases the more improvement in propulsive efficiency we have compared to a rigid

tail.



Chapter 5

Optimal Transition of FWMAVs from

Hovering to Forward Flight

5.1 Introduction

Unlike conventional airplanes, flapping-wing micro-air-vehicles (FWMAVs) move their wings

continuously with respect to the body. These new degrees of freedom for the wings trigger ques-

tions about the best wing kinematics for optimal aerodynamic performance at specific equilibrium

positions or configurations, and/ or maximum maneuverability for transition between these posi-

tions. This optimization objective is necessary because of the stringent weight, size, and power

constraints imposed on the design of these miniature vehicles.

To date, most investigations regarding aerodynamic-optimum wing kinematics have aimed to op-

timize hovering or forward flight capabilities. Berman and Wang [77], Kurdi et al. [78], and Taha

et al. [79] formulated optimization problems to determine the optimal time variations of the Euler

angles, describing flapping kinematics, for hovering with minimum aerodynamic power. Stanford

and Beran [80] and Ghommem et al. [81] solved similar problems for optimum aerodynamic per-

formance in forward flight. Still the open literature lacks constructive techniques to determine

68
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maneuverability- or control-optimum kinematics. The common approach has been to assume the

shape of the kinematic functions from the outset and adapt such a shape to ensure controllability

for the FWMAV, see Schenato et al. [82], Doman et al. [83], and Oppenheimer et al. [84]. That is,

the kinematic functions are not derived.

Taha et al. [85] proposed a constructive approach for maneuverability-optimum kinematics. They

used calculus of variations and optimal control to determine the optimum waveform for the back

and forth flapping angle in a horizontal stroke plane and constant angle of attack that results in the

maximum cycle-averaged forward acceleration from a hovering position. Since they considered

the initial acceleration from a hovering equilibrium, they neglected the body dynamics and, as

such, the problem was simplified to a one-degree-of-freedom kinematic optimization problem.

In this work, we formulate a minimum-time optimal control problem to determine the evolution of

the optimum wing kinematics that steers the FWMAV dynamical system from a hovering config-

uration to a forward flight configuration with a prescribed averaged forward speed. The steering

problem is investigated using averaged and time-periodic dynamics. In the averaged dynamics for-

mulation, we rely on the large separation between the FWMAV system’s two time scales, namely

a fast time scale associated with flapping and a slow time scale associated with body motion dy-

namics, to justify the use of the averaging theorem to convert the time-periodic flapping flight

dynamics into a time-invariant system. As such, the periodic orbits representing equilibria of

the original time-periodic system are reduced to fixed points. The flapping periodic waveform is

parametrized with some parameters that are considered as inputs to the time-averaged dynamics.

The parametrization proposed by Berman and Wang [77, 86], which is capable of representing

both square and sine functions, is used here. In contrast, the input to the time-periodic system is

the flapping speed with no periodicity constraint on the flapping angle. The wing pitching angle

η is assumed to be passively controlled with the back and forth flapping angle ϕ in such a way

to maintain a constant angle of attack throughout each half stroke. In fact, this piecewise con-

stant variation of the pitching angle (angle of attack) has been extensively used in the literature of

hovering FWMAVs [79, 82–84, 87] as an approach to comply with minimum actuation require-

ments in FWMAVs, stressed as the main reason for the successful flapping flight of the Harvard
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Robofly [88]. The layout of this chapter is as follows. In Section 5.2, the flight dynamical model

is briefly discussed, and the averaging dynamics is introduced. In Section 5.3, the procedure for

finding the periodic orbits for hovering and forward flight is detailed. The optimal control problem

formulation for both averaged and time periodic dynamics is setup in Section 5.4. Results for tran-

sitioning between hovering and forward flights with three different speeds for both averaged and

time periodic dynamics are presented and discussed in Section 5.5. The last Section 5.6 presents

the summary and conclusions.

5.2 Flight Dynamic Model

We use a flight dynamic model that was developed in a previous work by Taha et al. [89, 90]

and is based on a quasi-steady formulation that accounts for the dominant leading edge vortex

contribution as well as rotational effects. A schematic diagram of the FWMAV performing a

horizontal stroke plane is shown in Figure 5.1.

𝒙𝒃
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(a) Top view of the FWMAV.
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(b) Side view of the FWMAV.

Figure 5.1: Schematic diagram showing the back-and-forth flapping angle ϕ and the pitching angle
of the wing η of the FWMAV.
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The time periodic dynamical model is written as
u̇

ẇ

q̇

θ̇

 =


−qw − g sin θ

qu+ g cos θ

0

q

+


1
m
Xo(t)

1
m
Zo(t)

1
m
Mo(t)

0

 +


Xu(t) Xw(t) Xq(t) 0

Zu(t) Zw(t) Zq(t) 0

Mu(t) Mw(t) Mq(t) 0

0 0 0 0




u

w

q

θ

 (5.1)

where u is the forward velocity component along the body x axis, w is the normal velocity com-

ponent along the body z axis, and θ and q are pitching angle and angular velocity of the body,

respectively. In Eq. (5.1), X0, Z0 and M0 are respectively the aerodynamic forces and pitching

moment due to flapping that are given by:

X0(t) = −2K21ϕ̇(t)|ϕ̇(t)| cosϕ(t) sin2 η − 1

2
ρ̄bSbCDbV u

Z0(t) = −K21ϕ̇(t)|ϕ̇(t)| sin 2η − 1

2
ρ̄bSbCDbV w

M0(t) = 2ϕ̇(t)|ϕ̇(t)| sin η(K22∆x̂ cosϕ(t) +K21xh cos η +K31 sinϕ(t) cos η

(5.2)

where Kmn = 1/2ρAImn, Imn = 2
∫ R

0
rmcn(r)dr, Sb = πDbLb and Db/Lb = (4mb/(πρbL

3
b))

0.5

. A is the aspect ratio correction defined by

A =
πAR

2
(

1 +
√

(πAR
ao

)2 + 1
) (5.3)

The stability derivatives X̄u, X̄w, X̄q, Z̄u, Z̄w, Z̄q, M̄u, M̄w and M̄q represent the aerodynamic
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loads due to body motion variables. They are given by

Xu(t) = −4
K11

m
|ϕ̇(t)| cos2 ϕ(t) sin2 η

Xw(t) = −K11

m
|ϕ̇(t)| cosϕ(t) sin 2η

Xq(t) =
K21

m
|ϕ̇(t)| sinϕ(t) cosϕ(t) sin 2η − xh.Xw(t)

Zu(t) = 2Xw(t)

Zw(t) = −2
K11

m
|ϕ̇(t)| cos2 η

Zq(t) = 2
K21

m
|ϕ̇(t)| sinϕ(t) cos2 η − Krot12

m
ϕ̇(t) cosϕ(t)− xhZw(t)

Mu(t) = 4
K12∆x̂

Iy
|ϕ̇(t)| cos2 ϕ(t) sin η +

m

Iy
(2Xq − xhZu(t))

Mw(t) = 2
K12∆x̂

Iy
|ϕ̇(t)| cosϕ(t) cos η + 2

K21

Iy
|ϕ̇(t)| sinϕ(t) cos2 η − m.xh

Iy
Zw(t)

Mq(t) = −2∆x

Iy
|ϕ̇(t)| cosϕ(t) cos η(K12xh +K22 sinϕ(t))

+
1

Iy
ϕ̇(t) cosϕ(t)(Krot13∆x̂ cosϕ(t) cos η +Krot22 sinϕ(t))

− 2

Iy
|ϕ̇(t)| cos2 η sinϕ(t)(K21xh +K31 sinϕ(t))− Kvµ1f

Iy
cos2 ϕ(t)− mxh

Iy
Zq(t)

where Krotmn = πρ(1/2−∆x̂)Imn and Kv = π/16ρI04 .

Equation (5.1) can be written in an abstract form as

ẋ = f(x) + g(x, ϕ(t)) (5.4)

where the state vector x = [u,w, q, θ]T , f represents the inertial and gravitational forces, and g

represents the time-periodic aerodynamic loads that are written affine in the state variables.
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5.3 System Equilibrium Representations

Because FWMAVs are continuously subjected to oscillatory forces, their equilibrium states are

described by by periodic orbits rather than fixed points. In this work, we use the optimized shooting

method proposed by Botha and Dednam [91] to capture the different periodic solutions of the

system (5.4). The method is described in detail in Appendix B. The resulting periodic states,

inertial velocities, and trajectories are respectively shown in Figures 5.2 and 5.3. The periodic

orbits for hovering and forward flight are represented in the state space (u,w, q) in Figure 5.4, and

the red dots are the initial conditions presented in Table 5.1. The Floquet theorem used to assess

the stability of the obtained periodic orbits is discussed in Appendix B.3 and applied to the cases in

this work. On the other hand, very convenient way of transforming the NLTP system in Eq. (5.1)

to a representative time-invariant system is the averaging approach. This approach is mainly based

on the assumption that, due to the very fast flapping frequency relative to the body dynamics, the

body only feels the average values of the aerodynamic loads. It should be noted that the ratio of

the flapping frequency to the body natural frequency for the one of the slowest flapping insects

(Hawkmoth) is about 30 [90]. For a man made FWMAVs (e.g., Harvard Robofly), this ratio may

be as high as 120. In fact, the averaging approach is mathematically justified through the averaging

theorem in Appendix B. This averaging approach greatly simplifies the trim (equilibrium) problem

as the equilibrium periodic orbit is reduced to a fixed point for the averaged dynamics. Therefore,

instead of finding a periodic solution χ(t) that satisfies the differential equation (5.1) such that

it satisfies certain conditions (e.g., the mean velocities are zeros at hover), one has to solve an

algebraic equation for the corresponding fixed point of the averaged dynamics.
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Figure 5.2: Time history of body variables for hovering and forward periodic orbits

With the Cg position aligned with the hinge location, symmetric flapping (αd = αu and a0 = b1 =

0), ensures trim of the forward (X) force and pitching moment at hover with θ̄ = 0 [84, 92], as

shown in Figure 5.2 and Table 5.1. We also infer that the forward thrust force needed to propel

the FWMAV/insect forward to overcome the body drag can be achieved by two mechanisms: (i)

asymmetric-drag ( αd < αu) [85] and (ii) forward body pitching like helicopters (θ̄ < 0). To transi-

tion from hovering to to a small-speed forward flight in minimum time, the second approach might

not be the best because of the time taken to pitch the inertia of the whole body; asymmetric drag

is sufficient in this case and would achieve it faster. Therefore, the numerical shooting algorithm
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yielded the first mechanism at smaller forward speeds (e.g., V̄x = 2m/s). However, because this

mechanism would not be sufficient at larger forward speeds (e.g., V̄x = 3, 4m/s), the numerical

shooting algorithm would opt for the second mechanism at these speeds.
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Figure 5.3: Inertial velocities and trajectories for hovering and forward periodic orbits
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Table 5.1: Initial conditions for periodic orbit.

State Hover, V̄x = 0m/s V̄x = 2m/s V̄x = 3m/s V̄x = 4m/s
u(m/s) -0.0421 1.9257 2.9184 3.8869
w(m/s) 0.0011 -0.27214 -0.4608 -0.6678
q(rad/s) 0.8175 3.4996 0.0361 3.6231
θ(deg) -2.5361 -6.9204 -8.1791 -9.3161
ao(deg) 0 0.2151 1.1571 2.3124
a1(deg) 62.3225 59.451 70.8202 86.0717
b1(deg) 0 -31.5079 -40.1817 -50.2671
αu(deg) 0.4659 63.7915 68.3635 72.6631
αd(deg) 0.4659 23.2384 15.9856 10.8691

To assess the stability of the periodic orbit, we solved the system of equations defined in Eqs.

(5.4) and (B.25). The eigenvalues of the state transition matrix at t = T , Ξ(T ), are the Floquet

multipliers z. They are tabulated in Table 5.2 for hovering and three different cases of forward

flight.

Table 5.2: Floquet Multipliers z for Hovering and Forward Flight

V̄x = 0 V̄x = 2m/s V̄x = 3m/s V̄x = 4m/s
1.0920
0.8416
0.8229
0.6501




1.1301
0.8370
0.6922
0.4834




1.0884 + 0.0000i
0.8278 + 0.0000i
0.6249 + 0.0755i
0.6249− 0.0755i




1.0649 + 0.0000i
0.8363 + 0.0000i
0.5589 + 0.1285i
0.5589− 0.1285i



Looking at the Floquet multipliers, it is found that the periodic orbits for hovering and forward

flight are unstable, consistent with previous studies on flapping flight stability [93]. To make it

clearer, the Floquet multipliers are plotted versus the unit circle in the complex plane in Figure 5.5.

It is shown that each case has a Floquet multiplier outside the unit circle.
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Figure 5.5: Floquet multipliers for hovering and forward flight periodic orbits in the complex plane
with respect to the unit circle.

However, because the system is nonlinear, a desired equilibrium (e.g., hovering) may have different

solutions, possibly with different stability characteristics. Figure 5.6 shows four different hovering

periodic orbits along with their Floquet multipliers. Although the four orbits are close to each other,

they possess qualitatively different stability characteristics; three are stable and one is unstable.

The values of the Floquet multipliers are shown in Table 5.3.

Table 5.3: Floquet Multipliers z for Hovering flight for a different initial conditions
1.0925
0.6501
0.8222
0.8415




0.7135
0.9647 + 0.0922i
0.9647− 0.0922i

0.8823




0.698
0.9838 + 0.1744i
0.9838− 0.1744i

0.9154




0.7
0.9825 + 0.1699i
0.9825− 0.1699i

0.9127


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Figure 5.6: Floquet multipliers and trajectory for hovering orbit for different cases of initial condi-
tions.

5.4 Optimal Control Formulation

In this section we introduce the optimal control problem formulation for both averaged and time-

periodic dynamics.

5.4.1 Averaged Dynamics

The averaged dynamics are not affected by the full variation of the flapping angle over the cycle but

some integrals of such a waveform ϕ. We use a parametrization for the flapping angle defined by

Bhatia et al.[86]. This function was first introduced by Berman and Wang [77] for the symmetric

flapping during hovering and was later modified by Doman et al. [94] to account for asymmetric

flapping and continuity between cycles. We adopt the function of Bhatia et al. [86], which differs

from Doman et al.[94] in how the continuity criteria is defined. The flapping angle without the

continuity criteria of Bhatia et al.[94] is adopted at this stage as it will be shown later that no

feasible solution is obtained when using this criteria. The flapping angle can be defined as follows:
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ϕ(τ) =


φm

sin−1{Kφsin[(ω−δ)τ+π/2]}
sin−1Kφ

+ φ0, 0 5 τ 5 π
ω−δ

φm
sin−1{Kφsin[ω̃τ+ζ̃+π/2]}

sin−1Kφ
+ φ0,

π
ω−δ 5 τ 5 2π

ω

(5.5)

where ω̃ = ω(ω−δ)
ω−2δ

, ζ̃ = −2πδ
ω−2δ

, and τ is the fast time scale. δ is the reduction in wing-stroke

frequency during first half of stroke-cycle, and ζ̃ is the phase shift with frequency ω̃ during second

half of stroke cycle. Equation (5.5) allows for more choices for the resulting shape of the flapping

angle using only four inputs. The input that controls the shape of the waveform isKφ. The value of

Kφ = 1 represents a triangular function while the case ofKφ � 1 represents a sinusoidal function.

In addition, the angle of attack η is defined as

η(τ) =


αd ϕ̇(τ) > 0

π − αu, ϕ̇(τ) < 0

(5.6)

If we substitute for ϕ from Eq. (5.5) and Eq. (5.6) into the aerodynamic loads (e.g., X0-M0 and

stability derivatives) and then integrate the outcomes to obtain the corresponding cycle-averaged

quantities (e.g., X̄0-M̄0 and cycle-averaged stability derivatives), the averaged dynamics (B.5) is

written as

˙̄x(t) = F (x̄(t),U(t)) (5.7)

where U = [δ, φ0, φm, Kφ, αu, αd] contains the coefficients of the flapping angle ϕ that are

slowly time-varying for a varying waveform during a maneuver execution and angles of attack dur-

ing the upstroke and down stroke respectively. That is, the parametersU = [δ, φ0, φm, Kφ, αu, αd]

are seen as virtual inputs to the averaged dynamics. The steering takes place between two fixed

points, the origin and the final forward conditions. The minimum-time optimal control problem

for the averaged dynamics is defined as follows :

min J(U(.)) =

∫ t∗f

0

1dt = t∗f (5.8)
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subjected to the control constraint

Ul ≤ U(t) ≤ Uu (5.9)

that satisfies the differential equation (5.7) subject to end constraints

V̄x(t
∗
f ) = Vf

V̄z(t
∗
f ) = 0, q̄(t∗f ) = 0

(5.10)

and path constraint

ϕl ≤ ϕ ≤ ϕu (5.11)

to ensure a realistic flapping angle. The end constraint ˙̄x(t∗f ) = 0 is introduced to ensure equilib-

rium of the averaged dynamics at the final conditions. The final time is unknown and should be

obtained along with the solution of the optimal control problem.

5.4.2 Time-Periodic Dynamics

Since the optimal control theory allows piecewise variation of the control input to achieve realistic

flapping, the flapping speed ϕ̇ and pitching angle of the wing η are considered as the inputs to

the time-periodic dynamics. As such, the flapping angle is treated as one of the dynamics states.

Recalling Eq. (5.1), the nonlinear time-periodic system (5.4) is rewritten as

d

dt

x
ϕ

 =

f(x) + g(x, ˙ϕ(t), η(t))

ϕ̇

 (5.12)

where ϕ̇ is the input flapping velocity, and η is the input angle of attack. Equation (5.12) can be

reduced to the form

χ̇(t) = F (χ(t),U(t)) (5.13)
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where χ = [u,w, q, θ, ϕ]T , and U = [φ̇, η]T . The steering from hovering to forward flight now

takes place between two periodic orbits rather than two fixed points as in the last subsection. The

optimal control problem is to find a piecewise continuous control U(.) : [0, t∗f ]→ Θ ( admissible

control set), that steers the system (5.13) from the hovering orbit to the forward periodic orbit in

a minimum time. The assumed initial conditions for the hovering and forward periodic orbits for

different average forward speeds are presented in Table 5.1.The optimal control problem for the

time periodic dynamics can be defined as follows :

min J(U(.)) =

∫ t∗f

0

1dt = t∗f (5.14)

that satisfies the differential equation (5.12) subject to the initial and final constraints

χ(to) = [uo, wo, qo, θo, ϕo]

χ(t∗f ) = [uf , wf , qf , θf , ϕf ]
(5.15)

subjected to the control constraint

Θl ≤ U(t) ≤ Θu (5.16)

and path constraints

ϕl ≤ ϕ ≤ ϕu (5.17)

The end points at to and t∗f are the initial conditions of the hovering and forward orbits respectively,

i.e. the red dots in Figure 5.4. The bounds on the states and input are given in Table 5.4.

Table 5.4: Input and State Bounds

Variable Lower Bound Upper Bound
ϕmin,max(rad) −π/2 π/2

[Uϕ(= ϕ̇)] (rad/s) −π2f π2f
[αu, αd] (rad) −π/2 π/2
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5.5 Solution of the Optimal Control Problem

The optimal control problem for time-periodic and averaged dynamics defined in the previous

section is then solved using ICLOCS 1 software.We adopted hawkmoth morphological parameters

presented in Table 5.5.

Table 5.5: Hawkmoth parameters

Constant Value Constant Value
r̄1 0.44 mb 1.648(mg)
r̄2 0.508 Iy 2.08(g/cm2)
a0 2π f 26.3(Hz)
Sw 947.8(cm2) ∆x̂ 0.05
R 51.9(mm) Φ 60.5o

c̄ 18.3(mm) CDb 0.7
Db/Lb 0.81 ρ̄b 1100(Kg/m3)

Figure 5.7 shows the resulting optimal control inputs in terms of the flapping waveform and angles

of attack during the upstroke and down stroke for the averaged dynamics. It shows a discontinuity

in the flapping angle between the first two and last three cycles. It should be noted that no feasible

solution that satisfies all the boundary and equilibrium constraints was obtained when imposing a

continuity constraint. Furthermore, although the two side limits of the flapping speed at the end of

the fourth cycle are equal (zero), the derivative (ϕ̇) does not exist at this point because the function

ϕ is not continuous. Figure 5.8 shows a comparison between the averaged-formulation minimum

time transition between hovering and forward flight for V̄x = 2m/s and the simulation of the time

periodic system (5.4) using the obtained optimal flapping parameters. The discrepancy between

the two results point out that averaging is not suitable for designing the steering controller. Because

the transition occurs on a short time-scale (over few cycles), a fast variation (within the flapping

cycle) in control inputs may be needed.

1Imperial College London optimal control software
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Figure 5.7: Time history of flapping angle and speed during transition from hovering to forward
flight of V̄x = 2m/s using the average dynamics in Eq. (5.7)
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(f) Trajectory

Figure 5.8: Time history of inertial velocities, and trajectories during transition from hovering to
forward flight of V̄x = 2m/s using the average dynamics in Eq. (5.7)
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Figure 5.9 depicts the time histories of the body states and trajectories using the time periodic dy-

namics obtained for three cases of average forward speed. As noted from Figure 5.9, the FWMAV

needs more time to achieve the transition form hovering to forward flight as the average forward

speed increases. As seen from Figure 5.9(b,d), the FWMAV chooses the same thrust mechanism

discussed earlier during the transition between hovering and forward flight. In other words, the

more forward speed, the more energy taken from pitching down the body like helicopters.

Figure 5.10 shows the inertial velocities and trajectories for transition from hovering to three cases

of forward speeds. In Figures 5.10b, it is seen that the optimizer chose to gain the kinetic energy

to move FWMAV with an average speeds of V̄x = 2m/s, 3m/s through climbing and gaining the

necessary potential energy. On the contrary, since the transition time is relativity higher in the

case of V̄x = 4m/s, the optimizer oscillates between gaining kinetic and potential energy though

descending and climbing. At the end, the FWMAV returns to the horizontal level it started from.

Figure 5.11 shows the time history of the input ϕ̇, η to the time periodic dynamics. The flapping

angle ϕ is obtained by integrating the input ϕ̇. Since the formulation of the problem is a minimum

time control problem with upper and lower bounds on the controllers, we can see the bang-bang

nature of the input signals. The frequency of the flapping angle ϕ is allowed to increase as long as

the flapping speed does not exceed its bounds.
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Figure 5.9: Time history of body variables during transition from hovering to three different cases
of forward flight using the time periodic dynamics in Eq.(5.4)
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Figure 5.10: Time history of inertial velocities, and trajectories during transition from hovering to
three different cases of forward flight using the time periodic dynamics in Eq.(5.4)
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Figure 5.11: Time history of flapping angle, flapping speed , and angle of attack during transition
from hovering to three different cases of forward flight using the time periodic dynamics in Eq.(5.4)

Figures 5.12, 5.13, 5.14 show the inertial velocities, the flapping angle and speed starting from

the hovering cycle through the transition to the forward flight of average speed of 2m/s, 3m/s,

and 4m/s respectively. The variation in the inertial velocity in X direction in Figure 5.12a, 5.13a,

5.14a shows a periodic oscillation around the nominal values in hover and forward flight, i.e.

0, 2, 3, 4m/s, with ramp change in between. In addition, the variation in the flapping angle in

ϕ direction in Figure 5.12c, 5.13c, 5.14c show a sinusoidal nature for the hovering and forward

cycles with sawtooth nature in the transition phase. As noted from Figures 5.12c, 5.13c 5.14c ,the
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continuity issue between the flapping cycles in transition is no longer noticed. However, the MAV

needs to flap at much higher frequencies than in hover or forward flight. This can be seen from

the time history of the flapping angles in Figures 5.12c, 5.13c, 5.14c. For the forward periodic

orbits, a feedback controller is needed to stabilize the vehicle in case of any disturbance. This

is not necessary in hovering as we noticed in Section 5.4.2 that different equilibrium orbits exist

which some of them are stable as shown in Figure 5.6 and listed in Table 5.3.
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(d) Flapping speed φ̇ versus non-dimensional time

Figure 5.12: Time history of inertial velocities, flapping angles, and flapping velocities from hov-
ering through transition to forward flight of Vx = 2m/s.
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(d) Flapping speed φ̇ versus non-dimensional time

Figure 5.13: Time history of inertial velocities, flapping angles, and flapping velocities from hov-
ering through transition to forward flight of Vx = 3m/s.
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(d) Flapping speed φ̇ versus non-dimensional time

Figure 5.14: Time history of inertial velocities, flapping angles, and flapping velocities from hov-
ering through transition to forward flight of Vx = 4m/s.

In Figure 5.15, the trajectory of the FWMAV from hovering through transition to forward flight,

is shown for a three cases of the flight speeds. The hovering orbit is seen as point relative to

the transition phase and forward one.The mechanism of gaining the thrust required to achieve the

forward speed in highlighted in these Figures and the oscillation around the horizontal position is

clearly seen at the end of the transition period.



Ahmed A. Hussein Chapter 5 93

0 1 2 3 4 5 6 7 8 9 10

 X(cm)

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

 H
(c

m
) 

(a) Trajectory from hovering through transitioning to
froward flight of V̄x = 2m/s

0 2 4 6 8 10 12 14 16 18 20

 X(cm)

-0.05

0

0.05

0.1

0.15

0.2

0.25

 H
(c

m
) 

(b) Trajectory from hovering through transitioning to
froward flight of V̄x = 3m/s

-10 0 10 20 30 40 50 60 70

 X(cm)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

 H
(c

m
) 

(c) Trajectory from hovering through transitioning to
froward flight of V̄x = 4m/s

Figure 5.15: Trajectory from hovering through transitioning to froward flight for three different
cases of forward flight.
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(b) Flapping speed φ̇ versus non-dimensional time

Figure 5.16: Time history of flapping angle and speed during transition from hovering to three
different cases of forward flight using the time periodic dynamics in Eq.(5.4)

5.6 Conclusion

In this work, a simplified flight dynamic model for a flapping-wing micro-air-vehicle performing

a horizontal stroke plane is considered. An optimal control problem is formulated to determine

the evolution of the optimum waveform for the flapping angle in the horizontal plane that results

in minimum-time transition from hovering to forward flight. We investigated the optimal control

problem using time periodic and averaged dynamics. The averaging theorem is used to transform

the nonlinear, time-periodic flapping flight dynamics into a time-invariant system. The flapping

angle is the input to the averaged dynamics and is represented using a generic function, while the

flapping speed and angle of attack of the wing are the inputs to the time periodic system. As such,

the problem is formulated to determine the optimum evolution of the flapping angle that steers the

averaged dynamics from a hovering equilibrium point to a forward flight equilibrium point, and the

optimal evolution of the flapping speed and angel of attack that steers the time periodic dynamics

from a hovering equilibrium orbit to a forward one. The results for the averaged dynamics can be

summarized as follows:
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1 - The simulation results of the time periodic system using the optimal flapping angle from the

averaged dynamics optimization shows that the averaging is not suitable for designing the steering

controller as the major dynamics is lost through averaging.

2- The discontinuity of the flapping angle during the transition maneuver makes it unreliable for

practical implementation.

On the other hand, the transition results based on the time periodic dynamics shows that steer-

ing between the hovering and forward flight orbit is attainable. The results for the time periodic

dynamics can be summarized as follows:

1- The time histories of the states for the forward flight periodic orbits showed that flight speeds

between 0 and 4m/s lie in the attainable space.

2- The more the forward flight speed, the more time the MAV needs to perform the transition.

3- The more the forward flight speed, the more the FWMAV tends to choose the body pitching like

helicopters to achieve the desired speed.

4- The flapping speed hits the upper and limit limits through the transition, i.e. Bang-Bang sig-

nal. This is expected due to the formulation of the optimal control problem as a minimum time

transition.

5- The continuity of the flapping angle between the hovering through the transition to the forward

flight shows that the time periodic dynamics is more suitable than the averaged dynamics for

modeling the optimal control problem



Chapter 6

Stable, Planar Self Propulsion Using a

Hinged Flap

6.1 Introduction

To swim, fish vary their shape to generate fluid dynamic forces needed for propulsion and con-

trol. Efforts to model these phenomena, whether to better understand biological locomotion or to

engineer bioinspired devices, often rely on quasi-steady flow models that fail to capture the time-

varying interactions between the body and the fluid. In this paper, we incorporate unsteady loads

based on Theodorsen’s well-known model for unsteady lift generation within a framework for the

body motion to better understand the physics of pisciform (“fishlike”) locomotion.

Biologists describe pisciform locomotion on a scale that ranges from “oscillatory” to “undulatory.”

At the “oscillatory” end of the spectrum, carangiform propulsion can be modeled by a three-body

system in which a base body is propelled by a fin attached by a slender peduncle. A number

of efforts have investigated the use of geometric control theory to construct gaits for engineered

devices inspired by carangiform swimming [95–97].

At the “undulatory” end of the pisciform locomotion spectrum, [98] describes a number of aquatic

96
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(and amphibious) snake robots developed to mimic the motion of eels. These include HELIX [99],

REEL I and II [100], ACM-R5 [101], and Amphibots I, II, and III [102]. Though she lists a variety

of anguilliform robots, Kelasidi identifies only a few studies, beyond her own, that provide detailed

locomotion analysis [100, 103, 104].

The focus of this paper is on the oscillatory end of the pisciform locomotion spectrum. In fact, we

consider a case even simpler than that of carangiform propulsion: a simple two-body propulsion

device comprising a forebody and a servo-actuated tail. The motion model for this four degree of

freedom device accounts for unsteady flow effects using [13] well-known model.

The outline of this paper is as follows. In Section 6.2, we describe the kinematics and kinetics of

the two-body propulsion body. In Section 6.3, we briefly discuss the theoretical work that provides

the unsteady loads on an airfoil undergoing simple harmonic oscillations, and how we tailored

those theories to apply them in the current model. The resulting equations of motion are nonlinear

time periodic ordinanry differential equations. We use the optimized shooting method developed

by [91] to find the periodic orbit. In Section 6.4, we assess the validity of the current model through

investigating the stability of the saithe fish. In Section 6.5, we conclude by listing the capabilities

of the current model and proposing planned future work.

6.2 Motion Model

6.2.1 Kinematic Relations

The forebody moves in the inertial X and Y directions with speed U and V , respectively, and it

rotates around a vertical axis (parallel to the inertial Z axis) through the heading angle ψ. The

tail is hinged at the end of the forebody and is forced to rotate about a vertical axis through angle

θ relative to the body. The inertial velocity of the center of gravity of the forebody, as shown in

Fig. 6.1, is given by

~vB = U~I + V ~J (6.1)
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where ~I and ~J are unit vectors in the inertial X and Y directions, respectively. The angular

velocities of the body and tail are defined as

~ωB = ψ̇K (6.2)

and

~ωt = (ψ̇ + θ̇) ~K = (ψ̇ + θ̇)kt (6.3)

where ~K = ~I × ~J is aligned with the tail hinge defined by the unit vector kt.

6.2.2 Kinetic Relations

Using the representation of forces in Fig. 6.1, the equations of motion of the forebody are written

as

mBU̇ = [T −N sin(ψ)−Nθ sin(ψ + θ)

−DB cos(αB)]SBody

mBV̇ = [N cos(ψ) +Nθ cos(ψ + θ)

−DB sin(αB)]SBody

IB ṙ = (Mψ +Mθ −Nθ
LB
2

cos(θ))SBody

ψ̇ = r

(6.4)

where N and Nθ are the unsteady normal forces generated by the body and tail, respectively, and

Mψ and Mθ are the unsteady moments generated by the body and tail. The forces T and DB are

the thrust and drag generated by the body and tail motion. The parameters mB and IB are the body

mass and inertia and SBody is the span of the fish body and tail out of the plane of motion. The

details of these loads will be discussed in the next section.
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Figure 6.1: Annotated geometry of the two-body propulsion system. Velocity components are
shown in green, angles are red, and forces and moments are blue.

6.3 Hydrodynamic Model

Analytical expressions were derived by [13] for the lift force and pitching moment for an airfoil

undergoing simple harmonic pitching and plunging motion in a steady, free stream. Garrick [105]

extended the model to an airfoil undergoing the same kinematics but with an oscillating, hinged

flap. Garrick’s goal was to investigate the effect of the unsteady kinematics on propulsive thrust

and efficiency. Later, Greenberg [23] extended Theodorsen’s work for an airfoil without a flap un-

dergoing the same unsteady kinematic motion in a uniform free stream with time-varying velocity.
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Figure 6.2: The given system is equivalent to an airfoil with flap in unsteady motion.

In this work, we adapt Greenberg’s extension of Theodersen’s work to Garrick’s model. To use the

expressions for the unsteady loads on a two-dimensional airfoil with a flap as defined by Garrick,

we make the following assumptions. First, the two-body system is modeled as an airfoil with a

flapping tail. Second, the flow around the body and tail is assumed to be two-dimensional. Finally,

the mass and inertia of the tail are neglected, so that the center of mass of the two-body system is

the center of mass of the forebody.

We let u(t) denote the time-varying velocity of the free stream and we let δ(t) denote the flap

deflection angle. Adopting the assumptions described above, and referring to Fig. 6.2, we give the

following expressions for the normal forces N and Nθ, the thrust and suction forces T and S, and
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the moments Mψ and Mθ about a pivot point a and hinge e, respectively.

N = ρb2
[
π(ḧ+ uα̇ + u̇α− abα̈)− T4(uδ̇ + u̇δ)− bT1δ̈

]
Nθ = ρb2

[
T4ḧ+ T4(u̇α + α̇u)− bT9α̈

]
+
ρb2

2π

[
T5(uδ̇ + u̇δ) + T2bδ̈

]
+
ρb

π
u
√

1− e2
[
πb(1− e)α̇ + 2u

√
1− e2δ

+b(1− e)T10δ̇
]

+ 2ρbuT20v3/4C(k)

(6.5)

S =
1

π
√

2
[2v3/4cC(k)− bα̇− 2

√
1− e2uδ + bT4δ̇]

T = πρb2S2

(6.6)

Mψ = πρb3

[
aḧ+ (a− 1

2
)uα̇ + au̇α− b(a2 +

1

8
)α̈

]
− ρb2

[
T15u

2δ + T16b(uδ̇ + u̇δ) + 2T13b
2δ̈
]

+ 2πρb2(a+
1

2
)uv3/4C(k)

Mθ = πρb3
[
T1ḧ− T17(uα̇ + u̇α)− 2T13bα̈

]
+
ρb2

π

[
−T18u

2δ +
T19b

2
(uδ̇ + u̇δ) + T3b

2δ̈

]
− ρT12b

2uv3/4C(k)

(6.7)

Underlined terms in these expressions arise due to time-variation of the free stream velocity. The

parameter C(k) is the deficiency function that accounts for periodic wake shedding at the trail-

ing edge due to harmonic motion at reduced frequency k. The parameter b is the semi-chord of

the combined body and tail (i.e., b = (LB + LT )/2). The parameters a and e denote the non-

dimensional location of the pivot and hinge (i.e., measured in semi-chord lengths and positive aft
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from the center of the body). The coefficients T1−20 are related to the hinge offset e and can be

found in [105]. The normal velocity at the three-quarter chord line v3/4 is given by

v3/4 = uα + ḣ+ b(
1

2
− a)α̇ +

T10

π
uδ +

bT11

2π
δ̇ (6.8)

The airfoil and flap variables are related to the body variables as follows:

α = ψ u = U ḣ = −V δ = θ (6.9)

Then v3/4 is written in terms of body variables as

v3/4c = Uψ − V +
LB + LT

2
(
1

2
− a)α̇

+
T10

π
Uθ +

(LB + LT )T11

4π
δ̇

(6.10)

Substituting the expressions in Eq. (6.9) into Eqs. (6.5), (6.6), and (6.7) yields

N = ρb2
[
π(−V̇ + Uψ̇ + U̇ψ − abψ̈)

−T4(Uθ̇ + U̇θ)− bT1θ̈
]

Nθ = ρb2
[
−T4V̇ + T4(U̇θ + θ̇U)− bT9θ̈

]
+
ρb2

2π

[
T5(Uθ̇ + U̇θ) + T2bθ̈

]
+
ρb

π
U
√

1− e2
[
πb(1− e)ψ̇ + 2U

√
1− e2θ

+b(1− e)T10θ̇
]

+ 2ρbUT20v3/4C(k)

(6.11)

S =
1

π
√

2

[
2v3/4cC(k)− bψ̇ − 2

√
1− e2Uθ + bT4θ̇

]
T = πρb2S2

(6.12)
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Mψ = πρb3

[
−aV̇ + (a− 1

2
)Uψ̇ + aU̇ψ − b(a2 +

1

8
)ψ̈

]
− ρb2

[
T15U

2θ + T16b(Uθ̇ + U̇θ) + 2T13b
2θ̈
]

+ 2πρb2(a+
1

2
)Uv3/4C(k)

Mθ = πρb3
[
−T1V̇ − T17(Uψ̇ + U̇ψ)− 2T13bψ̈

]
+
ρb2

π

[
−T18U

2θ +
T19b

2
(Uθ̇ + U̇θ) + T3b

2θ̈

]
− ρT12b

2Uv3/4C(k)

(6.13)

6.4 Results

To illustrate the model, we consider the geometry of a saithe, or pollock, and examine the body’s

propulsion and stability due to the flapping tail. The parameters of the geometry are presented in

Table 6.1. The periodic solution in Fig. 6.3 is obtained using the shooting method discussed in

[91] for a sinusoidal input of the form θ = ao sin(2πft). A three-dimensional representation of

this periodic orbit is shown in Figure 6.4.

Stability of the periodic orbit is assessed using Floquet theory. The multipliers of the state transition

matrix associated with Eq. (6.4) are shown in Fig. 6.5 with respect to the unit circle. Their values

are tabulated in Table 6.3. The maximum value of the multiplier lies inside the unit circle which

implies that the system is stable. Figure 6.6 shows results from a simulation of Eq. (6.4) with

zero initial state and with a tail flapping frequency and amplitude that correspond to a steady-state

forward speed of V̄x = 1.2 m/s. To clarify the behavior of the system, the time simulation is also

shown for time step of δt = 50∆t.
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Table 6.1: Geometric Parameters

Parameter Value
Body Length LB 28 cm
Tail Length LT 12 cm
Body Mass mB 700 g

Pivot Point a −0.75
Tail Hinge Point e 0.4

Table 6.2: Initial conditions for periodic orbit.

State V̄x = 1.2 m/s
u (m/s) 1.2241
v (m/s) -0.0345
r (rad/s) 0.3584
ψ (rad) -0.0171
ao (rad) -0.1796
f (Hz) 4.2445
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Figure 6.3: Time history of body variables for forward motion of V̄x = 1.2 m/s for three cycles.



Ahmed A. Hussein Chapter 6 106

-1.5
0.1

-1

-0.5

0.05 1.24

0

ψ
(d

eg
) 0.5

1.22

v(m/s)

0

1

u(m/s)

1.5

1.2
-0.05 1.18

-0.1 1.16

Figure 6.4: Periodic orbit for forward flight of V̄x = 1.2m/s in the three dimensional state space.

Table 6.3: Floquet multipliers z for a steady-state forward swimming of speed V̄x = 1.2m/s for
the parameters in Table 6.1.

z
-0.0865 + 0.1252i
-0.0865 - 0.1252i

0.8296
0.9847
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Figure 6.5: Floquet multipliers for the forward flight periodic orbit in the complex plane with
respect to the unit circle for the parameters in Table 6.1.
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Figure 6.6: Simulation of equations of motion (6.4) using the input θ = −0.1796 sin(2π(4.2445)t).

To show the effect of the center of mass, the multipliers of the state transition matrix associated

with Eq. (6.4) are shown in Fig. 6.7 with respect to the unit circle for the same parameters given

in Table 6.1 but for a = 0.75, i.e. a > 0 implies that the center of mass lies behind the mid-point

of the total length of the body and the tail. Their values are tabulated in Table 6.4. Unlike Fig. 6.5,

the maximum value of the multipliers in Fig. 6.7 lies outside the unit circle which implies that the

system is unstable.
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Table 6.4: Floquet multipliers z for a steady-state forward swimming of speed V̄x = 1.2m/s for
the parameters in Table 6.1 but for a = 0.75, i.e. a > 0.

z
1.2621 + 0.0000i
0.0396 + 0.0851i
0.0396 - 0.0851i
0.3653 + 0.0000i
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Figure 6.7: Floquet multipliers for the forward flight periodic orbit in the complex plane with
respect to the unit circle for the parameters in Table 6.1 but for a = 0.75, i.e. a > 0.

6.5 Conclusion

We developed a coupled dynamic model for the motion of a simple two-body propulsion device

comprising a forebody and a servo-actuated tail that is based on the geometry of the saithe or

pollock. The unsteady loads were based on Theodorsen’s unsteady lifting theory for sinusoidal

flapping and were tailored for their application within the framework of the body motion. The
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simulation results show variations of the body variables that are within the same range of measured

values for a speed of 1.2m/s in water. Stability analysis performed using Floquet thoery shows

that the system is stable if the center of mass is ahead of the mid-point of the body and tail. If

this is not the case, the system become unstable. Future research will be performed to expand the

ranges of considered speeds and stability parameters in addition to conducting a few experiments

using a prototype for the two-body system.



Chapter 7

Conclusions

7.1 Conclusions

We implemented different dynamical system representations of unsteady flow and fluid-structure

interaction systems with the objective of either developing a reduced-order formulation or assess-

ing their performance or stability. In Chapter 2, we investigated the potential of implementing

variational principles to derive governing equations for the interaction of unsteady point vortices

with a solid boundary. To do so, we postulated a new Lagrangian function for the dynamics of

point vortices that is more general than Chapmans. We showed that this function is related to

Chapmans Lagrangian via a gauge symmetry for the case of constant-strength vortices. In other

words, both Lagrangian functions result in the same steady governing equation, i.e. the Biot-Savart

law is directly recovered from the Euler-Lagrangeequations corresponding to minimization of the

action integral with these two Lagrangians. We also found that, unlike Chapmans Lagrangian, the

principle of least action based on the proposed Lagrangian results exactly in the Brown-Michael

model for the dynamics of unsteady point vortices. We implemented the resulting dynamic model

of time-varying vortices to the problem of an impulsively started flat plate as well as an accelerat-

ing and pitching flat plate. For the case of an accelerating flat plate, the resulting time history of

the lift coefficient from the three models (variational based approach for the proposed Lagrangian

111
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and Chapmans, and the impulse matching model) was compared against the experimental results

of Beckwith and Babinsky. The results showed a better agreement for the variation approach using

the proposed Lagrangian. On the other hand, the results of the impulse matching model for the

pitching flat plat agree better with experimental results than the those based on Chapmanns and the

proposed Lagrangian (Brown-Michael model).

In Chapter 3, we used different Padé approximations for Loewys deficiency function to investigate

the dynamic stability of a hovering rotor blade. After linearizing the equations of motion about

the nonlinear trim deflections, the flutter boundary was found in time domain by approximating

the lift deficiency function as a rational polynomial in terms of Laplace operator. This formulation

yielded a new stability region that could not be determined under the assumption of a quasi-steady

flow.

In Chapter 4, we solved for the hydrodynamic loads generated by the motion of a flapping fish

tail. We modeled the cases of rigid, passive and actively actuated flexible tails using the two-

dimensional unsteady vortex lattice method. The results showed that the passive flexible case

introduce some enhancement in the propulsive efficiency. However, these improvements were

not observed in the case of the actively flexible tails. To overcome this inconsistency, we used

the three-dimensional UVLM to accurately model the hydrodynamics chordwise load distribution.

The results showed that flexibility enhances the performance of flapping tails.

In Chapter 5, we formulated the evolution of the optimum waveform for the flapping angle in the

horizontal plane that would result in minimum-time transition from hovering to forward flight.

We investigated the optimal control problem using time periodic and averaged dynamics. The

averaging theorem was used to transform the nonlinear, time-periodic flapping flight dynamics

into a time-invariant system. The flapping angle was used as the input to the averaged dynamics

and was represented using a generic function, while the flapping speed was used as the input to the

time periodic system. As such, the problem was formulated to determine the optimum evolution

of the flapping angle that steers the averaged dynamics from a hovering equilibrium point to a

forward flight equilibrium point, and the optimal evolution of the flapping speed that steers the
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time periodic dynamics from a hovering equilibrium orbit to a forward one. The results showed

that averaged-dynamics optimization is not suitable for designing the steering controller as the

major dynamics is lost through averaging and the resulting discontinuity of the flapping angle

during the transition maneuver makes it unreliable for practical implementation. On the other

hand, the transition results based on the time periodic dynamics shows that steering between the

hovering and forward flight orbit is attainable.

In Chapter 6, we developed a coupled dynamical model for the motion of a simple two-body

propulsion device comprising a forebody and a servo-actuated tail that is based on the geometry

of the saithe or pollock. The unsteady loads were based on Theodorsens unsteady lifting theory

for sinusoidal flapping and were tailored for their application within the framework of the body

motion. The simulation results show variations of the body variables that are within the same

range of measured values for a speed of 1.2m/s in water. Stability analysis performed using

Floquet theory showed that the system is stable if the center of mass is ahead of the mid-point of

the body and tail and unstable if the center of mass is behind this mid-point.

Results presented in this dissertation provide a basis for expanded use of different approaches

based on dynamical system approaches for reduced-order modeling of unsteady flows and fluid

structure interaction problems.



Appendix A

Finite Element Model and Finite-State

Unsteady Aerodynamics

A.1 Mass Damping and Stiffness Matrices of the Aeroelastic

Model

Mass Matrix :

M = EI + AI

Where EI and AI are the mass matrices of inertia and aerodynamic loadings respectively.

Damping Matrix :

D1 = −Ad1

D2 = −Ad2 + ED + CT

Where Ad1 and Ad2 , ED and CT are the damping matrices of aerodynamic, inertia and structure

loadings restrictively.
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Stiffness Matrix :

K = ES + KLT −
∂{KNL.q}

∂q

KS = −AS −
∂{ASNL .q}

∂q

KLT = KL + T

Where AS and ASNL , ES , KLT (KL and T) and KNL are the stiffness matrices of aerodynamic,

inertia and structure loadings restrictively.

Free Vector :

F = AF − EF

Where AF and EF are the free vectors of aerodynamic and inertia loadings respectively.

KNLq = −(Λz − Λy)sin(2θc)

∫ L

0

(N′′v)
TNφqN′′vqdx− (Λz − Λy)cos(2θc)

∫ L

0

(N′′v)
TNφqN′′wqdx

+ (Λz − Λy)cos(2θc)

∫ L

0

(N′′w)TNφqN′′vqdx+ (Λz − Λy)sin(2θc)

∫ L

0

(N′′w)TNT
φq N′′wqdx

+ (Λz − Λy)
sin(2θc)

2

∫ L

0

(N′′wqN′′w − N′′vqN′′v) qdx

+ (Λz − Λy)cos(2θc)

∫ L

0

N′′vqN′′wqdx

(A.1)

KL = (Λzcos
2θc + Λysin

2θc)

∫ L

0

(N′′v)
TN′′vdx+ (Λz − Λy)

sin(2θc)

2

∫ L

0

(N′′v)
TN′′wdx

+ (Λz − Λy)
sin(2θc)

2

∫ L

0

(N′′w)TN′′vdx+ (Λzcos
2θc + Λysin

2θc)

∫ L

0

(N′′w)TN′′wdx

+ κ

∫ L

0

(N′φ)TN′φdx

(A.2)

FA = R2

∫ 1

X̄

(X̄ + 2 ˙̄v)dX̄ =
R2

2

(
1− X̄2

)
+R2

∫ 1

X̄

(2 ˙̄v)dX̄ (A.3)
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T =

∫ L

0

FA
(
(N′w)TN′w + (N′v)

TN′v + (N′φ)TN′φ
)
dx

=

∫ L

0

1

2

(
1− (X̄i + x)2

)
(N′w)TN′wdx

+

∫ L

0

1

2

(
1− (X̄i + x)2

)
(N′v)

TN′vdx

+

∫ L

0

1

2

k2
A

R2

(
1− (X̄i + x)2

)
(N′φ)TN′φdx

(A.4)

CT =

∫ L

0

FA
(
(N′w)TN′w + (N′v)

TN′v + (N′φ)TN′φ
)
dx

=

∫ L

0

(∫ 1

X̄

(2 ˙̄v)dX̄

)
(N′w)TN′wdx

+

∫ L

0

(∫ 1

X̄

(2 ˙̄v)dX̄

)
(N′v)

TN′vdx

(A.5)

EI =

∫ L

0

(N′v)
TNvdx+

∫ L

0

(N′w)TNwdx+ µ2

∫ L

0

(N′φ)TNφdx (A.6)

ED = −2βpc

∫ L

0

(N′v)
TNwdx+ 2βpc

∫ L

0

(N′w)TNvdx− 2

∫ L

0

(N′v)
T (NvqNv + NwqNw)dx (A.7)

ES = −
∫ L

0

(N′v)
TNvdx+ (µ2

z − µ2
y)cos2θ

∫ L

0

(N′φ)TNφdx (A.8)

EF = −βpc
∫ L

0

(N′w)T X̄dx− (µ2
z − µ2

y)
sin2θc

2

∫ L

0

(N′φ)TNφdx (A.9)

AI =
−γc̄
24

∫ L

0

(N′w)TNwdx−
γc̄3

96

(
1

8
+ a2

)∫ L

0

(N′φ)TNφdx (A.10)
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Ad1 =
−γλi

6

∫ L

0

(Nv)
T (Nφq + θc)Nvdx+

γ

6

∫ L

0

(N′v)
T (2λi − (x+ X̄i)(Nφq + θc))Nvdx

− γ

6

∫ L

0

(x+ X̄i)(Nw)TNwdx+
γ

6

∫ L

0

(Nw)T (2(x+ X̄i)(Nφq + θc)− λi)Nvdx

+
γc̄

12
(
1

2
− a)

∫ L

0

(Nw)T (x+ X̄i)Nφdx+
γc̄2

24
(
1

2
+ a)(

1

2
− a)

∫ L

0

(Nφ)T (x+ X̄i)Nφdx

+
γc̄

6
(
1

2
+ a)

∫ L

0

(Nφ)T (x+ X̄i)(Nφq + θc)Nvdx−
γc̄

12
(
1

2
+ a)

∫ L

0

(Nφ)T (x+ X̄i)Nwdx

− γc̄λi
12

(
1

2
+ a)

∫ L

0

(Nφ)TNvdx

(A.11)

AS = −γ
6

∫ L

0

(x+ X̄i)(Nv)
TNφdx+

γ

6

∫ L

0

(x+ X̄i)
2(Nw)TNφdx

− γβpc
6

∫ L

0

(x+ X̄i)(Nw)TNvdx+
γc̄

12
(
1

2
− a)

∫ L

0

(x+ X̄i)(Nw)TNwdx

+
γc̄

12
(
1

2
+ a)

∫ L

0

(x+ X̄i)
2(Nφ)TNφdx−

γc̄βpc
12

(
1

2
+ a)

∫ L

0

(x+ X̄i)
2(Nφ)TNvdx

+

∫ L

0

(
γc̄2βpc

24
(
1

2
+ a)(

1

2
− a)(x+ X̄i)−

γc̄2

96
(x+ X̄i)

)
(Nφ)TNwdx

(A.12)

ASNL = −γ
6

∫ L

0

(
(Nv)

T (x+ X̄i)
2

(∫ x+X̄i

0

(Nv)
′′(Nw)′dX

))
dx (A.13)
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AF =

∫ L

0

NT
v

γ

6

(
−
CDo

(
X̄i + x

)
2

ao
− θcλi

(
X̄i + x

)
+ λ2

i

)

+

∫ L

0

NT
w

γ

6

(
1

2

(
1

2
− a
)
c̄βpc

(
X̄i + x

)
− λi

(
X̄i + x

)
+ θc

(
X̄i + x

)
2

)
+

∫ L

0

NT
φ

1

12

(
a+

1

2

)
γc̄

(
1

2

(
1

2
− a
)
c̄βpc

(
X̄i + x

)
− λi

(
X̄i + x

)
+ θc

(
X̄i + x

)
2

)
− 1

96
γc̄2βpc

(
X̄i + x

)
(A.14)

The shape functions Nw, Nv and Nφ are defined in Ref. [57]. Also the section integrals Λz, Λy, κ,

k2
A, µ2

z and µ2
y can be found in Ref. [53].

A.2 State Space Representation of the Equations of Motion

The following procedure aims to familiarize the reader of how the equations of motion can be writ-

ten in state space form, if we can represent the deficiency function C(k) as a fractional polynomial
N(p)
D(p)

in Laplace operator p .

Recalling (3.20)

ẏ = Ay +By
N(p)

D(p)
(A.15)

Let LC = yN(p)
D(p)

, where L1 = y1
N(p)
D(p)

, .......LNy = yNy
N(p)
D(p)

and Ny is the length of y.

Introducing intermediate variable h such that :

L1

h

h

y1

=
N(p)

D(p)
(A.16)
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Let L1

h
= N(p) and h

y1
= 1

D(p)
, expanding N and D in terms of p leads to :

y1 = h[pn + dn−1p
n−1 + .....d0] (A.17)

L1 = h[amp
m + am−1p

m−1 + .....a0] (A.18)

Equation (A.17) can be written in state space form as :



dnh
dtn

dn−1h
dtn−1

.

.

.

dh
dt


=



−dn−1 −dn−2 ..... d0

1 0 ..... 0

0 1 ..... 0

. . 1 0

. . . 0

. . . 0





dn−1h
dtn−1

dn−2h
dtn−2

.

.

.

h


+



1

0

.

.

.

0


y1 (A.19)

In matrix form :

Ḣ = AcH +Bcy1 (A.20)

From eq A.17 : dnh
dtn

= y1 − dn−1
dn−1h
dtn−1 − dn−2

dn−2h
dtn−2 ........− d0h

for the case of n = m (it’s always the case), substitute in (A.18)

L1 =
[
(am−1 − amdn−1) (am−2 − amdn−2) ...... (a0 − amd0)

]


dn−1h
dtn−1

dn−2h
dtn−2

.

.

.

h


+ [am]y1 (A.21)
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In matrix form :

L1 = CcH +Dcy1 (A.22)

(A.22) and (A.20) is repeated Ny times such that :


Ḣ

.

.

Ḣ

 =


Ac [0] ... [0]

[0] Ac ... [0]

. .. .. [0]

[0] .. .. Ac




H

.

.

H

+


Bc [0] ... [0]

[0] Bc ... [0]

. .. .. [0]

[0] .. .. Bc




y1

y2

.

yNy

 (A.23)


L1

.

.

LNy

 =


Cc [0] ... [0]

[0] Cc ... [0]

. .. .. [0]

[0] .. .. Cc




H

.

.

H

+


Dc [0] ... [0]

[0] Dc ... [0]

. .. .. [0]

[0] .. .. Dc




y1

y2

.

yNy

 (A.24)

In matrix form :

Ṁ = ACM +BCy (A.25)

LC = CCM +DCy (A.26)

Combining (A.2) and (A.26) with (A.15) leads to : ẏ
Ṁ

 =

A+B.DC B.CC

BC AC

 y
M

 (A.27)

Introducing a new variable Z =

 y
M

, eq (A.27) can be written as :

∴ Ż = AnewZ (A.28)
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Where :

Anew =

A+B.DC B.CC

BC AC

 (A.29)



Appendix B

System Equilibrium Representations

B.1 Averaged Dynamics

Equation (5.4 ) is a nonlinear time-periodic (NLTP) system whose stability analysis and control

design are quite challenging. A very convenient way of transforming the NLTP system in Eq. (5.1)

to a representative time-invariant system is the averaging approach. This approach is mainly based

on the assumption that, due to the very fast flapping frequency relative to the body dynamics, the

body only feels the average values of the aerodynamic loads. It should be noted that the ratio of

the flapping frequency to the body natural frequency for the one of the slowest flapping insects

(Hawkmoth) is about 30 [90]. For a man made FWMAVs (e.g., Harvard Robofly), this ratio may

be as high as 120. In fact, the averaging approach is mathematically justified through the following

theorem.

For a nonlinear, time-periodic system in the form

χ̇ = εY (χ, t, ε) (B.1)

122



Ahmed A. Hussein Chapter B 123

where Y is T -periodic and ε is small enough, the averaged dynamics are defined by [106]

˙̄χ = εȲ (χ̄) = ε
1

T

∫ T

0

Y (χ̄, t).dt where ε� 1 (B.2)

If the averaged system (B.2) has a hyperbolic fixed point, then the original NLTP system (B.1)

will have a hyperbolic periodic orbit of the same stability type [106, 107]. That is, the averaged

dynamics is representative of the time-periodic system as long as ε is small enough. To write the

abstract form of the flight dynamics represented by Eq. (5.4) in the form of (B.1), that is amenable

to the averaging theorem, we introduce a new time variable τ = ωt, where ω is the flapping

frequency. The system (5.4) is then written as

dχ

dτ
=

1

ω
(f(χ) + g(x, ϕ(τ)) (B.3)

which is in the form (B.1) with ε = 1
ω

. That is, if flapping is performed with a high enough

frequency that ε would be small enough to justify the application of the averaging theorem.

Averaging the system (B.3) and transforming it back to the original time variable, we obtain

˙̄χ = f(χ̄) + ḡ(χ̄) (B.4)

where ḡ(χ) = 1
T

∫ T
0
g(χ, ϕ(t))dt represents the cycle-averaged aerodynamic loads. As such, the

averaged dynamics of the system (5.1) is written as
˙̄u(t)

˙̄w(t)

˙̄q(t)

˙̄θ(t)

 =


−q̄(t)w̄(t)− g sin θ̄(t)

q̄ū(t) + g cos θ̄(t)

0

q̄(t)

+


1
m
X̄o(t)

1
m
Ȳo(t)

1
m
Z̄o(t)

0

 +


X̄u(t) X̄w(t) X̄q(t) 0

Z̄u(t) Z̄w(t) Z̄q(t) 0

M̄u(t) M̄w(t) M̄q(t) 0

0 0 0 0




ū(t)

w̄(t)

q̄(t)

θ̄(t)


(B.5)

where the over bar is used to denote an averaged quantity. It should be noted that although the

variables in the averaged system (B.5) are averaged over the flapping cycle (fast time-scale), they
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are still slowly time-varying, which allows for maneuvering of the FWMAV, e.g. transition from

one equilibrium configuration to another.

B.2 Time Varying-Dynamics-Periodic Orbits

The periodic orbit for both hovering and forward flight is obtained using the optimized shooting

method proposed by Botha and Dednam [91] as an extension to the general shooting method to

solve for periodic solutions of both autonomous and non-autonomous nonlinear systems. This

method is based on the Levenberg Marquart Algorithm (LMA), which is a non-linear least squares

optimization scheme. The main idea of this method is the minimization of the residue vector,

which is the difference between a point at a specific T + ∆τ and another one at ∆τ . We consider

the nonlinear dynamical system

χ̇ = f(χ, t, ε) (B.6)

where χ, f ∈ Rn. This system is a non-autonomous system because it depends explicitly on time.

For a periodic solution

χ(t) = χ(t+ T ) ∀ t ≥ 0 (B.7)

where T > 0 is the period. LMA is a method for solving nonlinear least squares problems [108].

Suppose that it is desired to fit a function ŷ(t; p) to a set of m data points (ti, yi), where the

independent variable is t and p is a vector of n parameters. For this problem it is necessary to

minimize the sum of the weighted squares of the errors between the measured data and the curve

fit function

χ2(p) =

[
m∑
i=1

y(ti)− ŷ(ti; p)

wi

]2

= yTWy − 2yTWŷ + ŷTWŷ

(B.8)
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whereW is the diagonal weighting matrix. Based on the gradient descent method, the perturbation

h that moves the parameters in the direction of steepest descent is,

hgd = αJT (y − ŷ) (B.9)

where J is the Jacobian matrix and α is the step size. In the same manner, it can be shown that the

Gauss-Newton perturbation is given by

[JTWJ ]hgn = JTW (y − ŷ) (B.10)

Since LMA adaptively varies the parameter updates between Gradient Descent and Gauss Newton

methods, the resulting perturbation is given by

[JTWJ + λI]hlm = JTW (y − ŷ) (B.11)

The optimized shooting method can be applied to any system that can be expressed in the form of

Eq. (B.6). In the original work, Botha used the period of the system to normalize the system by

letting τ = t/T which yielded

ẋ = Tf(x, α, Tτ) (B.12)

The new variable τ allows for the simplification of the boundary conditions in Eq. (B.7) with τ = 1

implying a full cycle. The residual is then written as

R = T

∫ 1

0

f(x, α, τt) (B.13)

Furthermore, the number of quantities to be optimized impact the residual. As such, we write

R = (x(1)− x(0), x(1 + ∆τ)− x(∆τ), ..., x(1 + (p− 1)∆τ)− x((p− 1)∆τ)) (B.14)
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where ∆τ is the integration step size. The natural number p in the residual equation is a require-

ment of the LMA and has to be chosen so that the number of components of the residual is greater

than or equal to the number of quantities to be optimized. The main goal now is to minimize the

residue vector to get the right initial conditions that will put the system in periodic equilibrium.

To capture a periodic orbit that ensures hovering or forward flight, the averaged inertial veloc-

ities should be set to zero or the required averaged forward speed, i.e. V̄x = 0, 2m/s. This

can be achieved in several ways. In previous work [109], it was done by introducing new states

Vz = wcos(θ) − usin(θ) and Vx = ucos(θ) + wsin(θ), where Vx and Vz are the inertial forward

and vertical speeds. This will require the integration of these two states to the differential equa-

tions, which means a 2p more elements in the reside vector. This will increase the time required

to minimize the residue. To reduce the computation time, we will require the average inertial ve-

locities in the X and Z directions to be prescribed, i.e. for hover V̄x = 0 , V̄z = 0, for forward,

V̄x = Vf , V̄z = 0. This can be done by adding these two entires to the residue vector.

The system is subjected to a harmonic variation of the flapping angle

ϕ(t) = ao + a1cos(2πft) + b1sin(2πft) (B.15)

with a variation of the wing pitching angle

η(τ) =

 αd ϕ̇(τ) ≥ 0

π − αu ϕ̇(τ) ≤ 0
(B.16)

The objective of the optimization algorithm is to minimize the difference between the averaged in-

ertial velocities and the desired ones along with other elements of the residue vector. For example,
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if three elements are chosen for each state, i.e. p = 3, the residue vector will be as follows

R =



u(1)− u(0)

u(1 + ∆τ)− u(∆τ)

u(1 + 2∆τ)− u(2∆τ)

w(1)− w(0)

w(1 + ∆τ)− w(∆τ)

w(1 + 2∆τ)− w(2∆τ)

q(1)− q(0)

q(1 + ∆τ)− q(∆τ)

q(1 + 2∆τ)− q(2∆τ)

θ(1)− θ(0)

θ(1 + ∆τ)− θ(∆τ)

θ(1 + 2∆τ)− θ(2∆τ)

V̄x − V̄xd
V̄z − V̄zd



(B.17)

where V̄x,z = 1
T

∫ T
0
Vx,z(τ)dτ . The residual is minimized using the nonlinear square function

in Matlab, lsqnonlin, with the Levenberg-Marquardt algorithm. ∆τ was set equal to 10−2.

The output of the minimization process are the initial conditions that put the system in periodic

equilibrium and are given in Table 5.1. The equations of motion (5.1) are integrated using ODE45

with the initial conditions in Table 5.1.

B.3 Stability of Periodic Orbits

Stability of Linear Time Periodic (LTP) systems can be assessed using Floquet Theory[110]. Look-

ing at Floquet multipliers of small systems of ODEs. These multipliers are the eigenvalues of the
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monodromy matrix which is the solution at t = T for the variational equation

dΞ(t)

dt
=
∂F

∂x

∣∣∣∣
x(t)

Ξ(t) (B.18)

where

Ξ(t) =


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

 (B.19)

where Ξ(t) is the state transition matrix and Ξ(0) is the identity matrix. The initial conditions

are the result of the optimization problem in subsection B.2. Using this initial condition will

ensure that the system is in the periodic orbit and the values of Floquet multipliers will not change.

The asymptotic stability of the solution can be assessed by checking whether the other Floquet

multipliers are less than one. The periodic orbit is said to be asymptotically unstable if at least one

of the Floquet multipliers lie outside the unit circle in the complex plane. Recall the system in Eq.

(5.4), calculating its Jacobian
∂F

∂χ
=
∂f(χ)

∂χ
+
∂ga(χ, t)

∂χ
(B.20)

where

∂f(χ)

∂χ
=


0 −q −w −g cos(θ)

q 0 u −g sin(θ)

0 0 0 0

0 0 1 0

 (B.21)

and

∂ga
∂χ

=


Xu(t) Xw(t) Xq(t) 0

Zu(t) Zw(t) Zq(t) 0

Mu(t) Mw(t) Mq(t) 0

0 0 0 0

 (B.22)
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Now Eq. (B.18) becomes

dΞ(t)

dt
=




0 −q −w −g cos(θ)

q 0 u −g sin(θ)

0 0 0 0

0 0 1 0

+


Xu(t) Xw(t) Xq(t) 0

Zu(t) Zw(t) Zq(t) 0

Mu(t) Mw(t) Mq(t) 0

0 0 0 0



Ξ(t) (B.23)

Equation (B.18) is solved for the monodromy matrix Ξ(t). The new system states of Ξ is added to

the state vector χ. The simulation is carried out using the results of the optimization problem and

the identity matrix for Floquet multipliers as follows

Ξi(0) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (B.24)

The 16 new linearized states are added to the old states (u,w, q, θ). The new system to be solved

contains 20 states. The new states added to the system of equations are

dΞ(t)

dt
=


ṁ11 ṁ12 ṁ13 ṁ14

ṁ21 ṁ22 ṁ23 ṁ24

ṁ31 ṁ32 ṁ33 ṁ34

ṁ41 ṁ42 ṁ43 ṁ44

 =


Xu(t) Xw(t)− q Xq(t)− w −g cos(θ)

Zu(t) + q Zw(t) Zq(t) + u −g sin(θ)

Mu(t) Mw(t) Mw(t) 0

0 0 1 0

Ξ(t)

(B.25)
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