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Minimum-Time Transition of FWMAVs from Hovering to
Forward Flight

Ahmed Hussein* Haithem E. Taha' Muahmmed R. Hajj*

Unlike conventional airplanes, flapping-wing micro-air-vehicles (FWMAVs) move their wings con-
tinuously with respect to the body. These new degrees of freedom for the wings (wing kinematics)
provide more room for optimal design of these miniature vehicles that are prone to stringent weight
and power constraints. However, very few attempts have aimed to provide maneuverability-optimum
wing kinematics. In general, the shapes of the kinematic functions are assumed from the outset and
their level of control authority is assessed at a later stage. In this work, we formulate a minimum-
time optimal control problem to steer the FWMAYV dynamical system from hovering configuration to
forward flight with a prescribed forward speed. Assuming horizontal stroke plane and a piece-wise
constant variation for the wing pitching angle, only the waveform of one degree-of-freedom for the
wing is optimized (back and forth flapping). Since the flapping angle is periodic, we represent it via a
truncated Fourier series. The number of Fourier terms is discussed. The optimal control problem is
formulated such that the cost functional is the final time, the slowly time-varying Fourier coefficients
of the flapping angle are the inputs to be optimized along with the angles of attack (i.e., design vari-
ables), and the goal is to steer the averaged dynamics from the hovering configuration (origin) to a
prescribed forward speed.

Nomenclature

Chord length
Mean chord length
Gravitational acceleration
Body mass
Aerodynamic moment about y; axis
Body moment of inertia about the yb axis
Distance along the wing span
Radius of section having mean chord length
Wing radius (Length)
Area of one wing
Time variable
f  Flapping period and frequency
Aerodynamic force along x;, axis
Aerodynamic force along z;, axis
Normalized position of the pitch axis
Normalized chordwise distance between the center of pressure and the hinge location
Angle of attack
Pitching angle of the wing
Back and forth flapping angle
Amplitude of the flapping motion
Pitching angle of the body
Air density
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I. Introduction

Unlike conventional airplanes, flapping-wing micro-air-vehicles (FWMAVs) move their wings continuously with
respect to the body. These new degrees of freedom for the wings trigger a whole new area of research to answer
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the following questions: What should be the wing motion for optimum aerodynamic performance?, What should the
wing kinematics look like for maximum maneuverability from an equilibrium position?, and several other questions.
The optimization objective for flapping-wing micro-air-vehicles is necessary because of the stringent weight, size, and
power constraints imposed on the design of these miniature vehicles.

While we find many interesting research articles aiming for aerodynamic-optimum wing kinematics, very few trials
have aimed to provide maneuverability-optimum wing kinematics. Berman and Wang [1], Kurdi et al. [2], and Taha
et al. [3] formulated optimization problems to determine the optimal time variations of the Euler angles, describing
flapping kinematics, for hovering with minimum aerodynamic power. Stanford and Beran [4] and Ghommem et al.
[5] solved similar problems for optimum aerodynamic performance in forward flight. On the other hand, the open
literature, indeed, lacks constructive techniques to determine maneuverability- or control-optimum kinematics. The
common approach is to assume the shape of the kinematic functions from the outset and adapt such a shape to ensure
controllability for the FWMAYV, see Schenato et al. [6], Doman et al. [7], and Oppenheimer et al. [8]. That is, the
kinematic functions are not derived. For a more detailed information about kinematic optimization of FWMAV3s, the
reader is referred to the thorough review article by Taha, Hajj, and Nayfeh [9].

The first trial to provide a constructive approach for maneuverability-optimum kinematics was proposed by Taha
et al. [10]. They used calculus of variations and optimal control to determine the optimum waveform for the back
and forth flapping angle in a horizontal stroke plane and constant angle of attack that results in the maximum cycle-
averaged forward acceleration from a hovering position. Since Taha et al. considered the initial acceleration from a
hovering equilibrium, they neglected the body dynamics and, as such, the problem is simplified to a one-degree-of-
freedom kinematic optimization problem. Therefore, they could even solve it using calculus of variations techniques.

In this work, we formulate a minimum-time optimal control problem to determine the evolution of the optimum
wing kinematics that steers the FWMAV dynamical system from a hovering configuration to a forward flight configu-
ration with a prescribed forward speed. Since flapping flight dynamics constitutes a nonlinear, time-periodic system,
equilibrium configurations (e.g., hovering and forward flight) are represented by periodic orbits. As such, the opti-
mal steering problem between different equilibrium configurations becomes intricate. In fact, ensuring equilibrium is
difficult. Therefore, we rely on the large separation between the FWMAV system’s two time scales (fast time scale
associated with flapping and slow time scale associated with body motion dynamics). to use the averaging theorem to
convert the time-periodic flapping flight dynamics into a time-invariant system. As such, the periodic orbits represent-
ing equilibrium of the original time-periodic system are reduced to fixed points. Clearly, steering between fixed points
is quite easier than steering between periodic orbits.

Following most insects in nature [11, 12], a horizontal stroke plane is assumed here, with a stroke plane angle
. Moreover, the wing pitching angle 7 is assumed to be passively controlled with the back and forth flapping angle
 in such a way to maintain a constant angle of attack throughout the entire stroke. In fact, these kinematics have
been extensively used in the literature of hovering FWMAVs [6, 7, 8, 13, 3], as they comply with minimum actuation
requirements in FWMAVZ, stressed as the main reason for the successful flapping flight of the Harvard Robofly [14].
Figure 1 shows a schematic diagram for a FWMAV performing a horizontal stroke plane.

The main technical challenge facing optimal control formulation for FWMAVs kinematic optimization is the peri-
odicity constraint. We go about this challenge by exploiting the periodicity nature of the flapping angle ¢ to write its
waveform over one cycle in a truncated Fourier series expansion. The required number of Fourier terms is discussed.
Over a flapping cycle (i.e., fast time scale), the Fourier coefficients of the flapping angle waveform are constants.
However, since the waveform may vary from one cycle to another (e.g., symmetric waveform is expected at hovering
while asymmetric waveform is expected during forward flight), the Fourier coefficients will be slowly time-varying.
As such, we formulate an optimal control problem such that the final time is the cost functional (i.e., minimum-time
problem), the controls to be optimized are the slowly-varying Fourier coefficients of the p-waveform, and the controls
have to steer the FWMAV averaged dynamics (slowly varying dynamics) from a hovering fixed point to a forward
flight fixed point.

I1. Flight Dynamic Model

We use a flight dynamic model that was developed in a previous work [15, 16]. This model neglects flexibility
wing-inertial effects. As for aerodynamics, it uses a quasi-steady formulation that accounts for the dominant leading
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Figure 1: Schematic diagram showing the back-and-forth flapping angle ¢ and the pitching angle of the wing 7.

edge vortex contribution as well as rotational effects. The model is written as

U —qw — gsinf LX,(t) Xu(t) Xu() X40) 0 u
w qu + gcosd n L Z,(t) n Zu(t) Zyut) Zgit) 0] [w 0
il 0 o | * | Mu) M) My 0 | g
0 q 0 0 0 0 0 0

where w is the forward velocity component along the body z axis, w is the normal velocity component along the body
z axis, and € and ¢ are pitching angle and angular velocity of the body, respectively. In Eq. (1), X, Zy and M, are
the aerodynamic forces due to flapping and the drag of the body. They can be written as :

] . 1_
Xo(t) = —2K219(t)|p(t)| cos p(t) sin? n — iprbCvau

N : 1_
Zo(t) = —Ka214(t)|o(t)] sin 2n — iprbCthw
Mo(t) = 2¢(t)|@(t)| sin (K22 A% cos p(t) + Kai1xp cosn + Kay sing(t) cosn

where Kyn = 1/2p AL, Ly = 2 [ e (r)dr, Sy = wDyLy and Dy/Ly = (4my/(xpoL3))" .

The stability derivatives Xus Xows Xg, Zy, L, Zq, M, M, and Mq represent the aerodynamic loads due to body
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motion variables. They are given by

K
Xu(t) = 4= [p(t)| cos® p(t) sin® n
m
Ky, .
Xu(t) = ——=1¢(t)] cos p(t) sin2n
Ko, . :
X, () = ——1¢(t)| sin () cos o(t) sin 2y — 5. X4 (t)
m
Z,(t) = 2X,,(t)
Kll . 2
Zw(t) = —2——|o(t
(1) = 2" 210 cos?
Zq(t) = 2= [ p(1)] sin p(t) cos® 5 — =222 5(t) cos p(t) — wnZu (1)
KipAz
M () = 4=2=2|p(t) cos? p(t) sing + 7= (2X, — w124 (1))
y y
Ki2AZ K .
Mo (t) = 27228 6(8) | cos () cos n + 222 (1) sin () cos? n — T 7, (1)
I, I, I,
2Ax ) 1, R .
M,(t) =— 7 [(t)] cos p(t) cos n(Kiaxp + Kagsinp(t)) + T@(t) €08 Q1) (K rot,5 AZ cos o(t) cosn + Kpot,, sin¢(t))
y y
2. . . K, mx
- I—\gp(t)\ cos? nsin o(t) (Ko, + K3y sinp(t)) — Iulf cos? p(t) — 7 h Zy(t)
where Ko, = 7p(1/2 — AZ) L, and K, = 7/16pIy,4 .
The system (1) can be written in an abstract form as
x =Fx) +9(x (1)) 2

where the state vector X = [u,w, q,0]T, f is the inertial and gravitational contributions, and g represents the time-
periodic aerodynamic loads that are written affine in the state variables.

II1. The Averaging Approach

Equation (2) is a nonlinear time-periodic (NLTP) system whose stability analysis and control design is challeng-
ing. A very convenient way of transforming the NLTP system (1) into a representative time-invariant system is the
averaging approach. This approach is mainly based on the assumption that, due to the very fast flapping frequency
relative to the body dynamics, the body only feels the average values of the aerodynamic loads. It should be noted
that the ratio of the flapping frequency to the body natural frequency for the slowest flapping insect (Hawkmoth) is
about 30 [16]. For man made FWMAVs (e.g., Harvard Robofly), the ratio may even reach as high as 120. In fact, the
averaging approach is mathematically justified (based on the stated assumption) in the following theorem.

A. Averaging Theorem

For a nonlinear, time-periodic system in the form
X = €Y (x,t,€) 3)
where Y is T-periodic, define the averaged dynamics as [17]

_ 1 [T
x=¢€Y(x) = ET/ Y (x,t).dt wheree <1 4
0

If the averaged system (4) has a hyperbolic fixed point, then the original NLTP system (3) will have a hyperbolic
periodic orbit of the same stability type [17, 18]. That is, the averaged dynamics is representative for the time-periodic
system as well as € is small enough.
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B. Averaged Dynamics

Recall the abstract form (2) of the used flight dynamic model, and to write it in the form (3) that is amenable to the
averaging theorem, we introduce a new time variable 7 = wt, where w is the flapping frequency. The system (2) is

then written as p )
X = () + gl (7)) 5)

dr w

which is in the form (3) with € = % That is, if flapping is performed with a high enough frequency, € would be small
enough to apply the averaging theorem.
Averaging the system (5) and transforming it back to the original time variable, we obtain

x=f(x)+9(x) (6)
where g(x) = + f 0 9 ))dt represents the cycle-averaged aerodynamic loads. As such, the averaged dynamics
of the system (1) is wrltten as

w\  [—go) - gsind()\  (EX0\ (X)) Xo(t) X0 0\ [al)
@(t) _ qu(t) + gcosO(t) 4 il)fo(t) + %u (t) Z}u (t) 7q(t) 0 w(t) (7)
i | = 0 L2, | T a0 Mo M@ 0 | aw)
9( ) q(t) 0 0 0 0 0 0(¢)

where over bar denotes an averaged quantity. It should be noted that although the variables in the averaged system (7)
are averaged over the flapping cycle (fast time-scale), they are still slowly time-varying as the FWMAV maneuvers
(i.e., moves from one equilibrium configuration to another).

IV. Optimal Control Formulation

Since the back-and-forth flapping angle ¢ is periodic, it can be written over one period in a truncated Fourier series
expansion as

al 2mn
= Z ay, cos( —T + by, SIH(TT)) (8)

where 7 is the fast time scale. If we substitute for ¢ from Eq. (8) into the aerodynamic loads (e.g., Xo-Mj and stability
derivatives) and then integrate the outcomes to obtain the corresponding cycle-averaged quantities (e.g., Xo-M; and
cycle-averaged stability derivatives), the averaged dynamics (7) will be written as

x(t) = F(x(t),U (1)) ©)

where U = [ao a b a, ad] contains the Fourier coefficients of the flapping angle ¢, which are slowly time-
varying for a varying waveform during a maneuver execution and angles of attack during the upstroke and down stroke
respectively. That is, the Fourier coefficients a = (ay,as,...,an) , b = (b1, b, ...,by) and «,,, ay are seen as inputs
to the averaged dynamics.

Then, the optimal control problem is to find a piecewise continuous control U(.) : [0,¢5] — [=1,1]*N*! C

R2N+1 that steers the system (9) from the origin to the point [V§,0,0 ,0]7, where V is the specified desired forward

speed and minimizes the functional J(U(.)) fo 1dt (i.e., steering in minimum time). Clearly, the final time is
unknown and should be come with the solution of the optimal control problem. The optimal control problem can be
defined as follows :

ty
min J(U(.)) = / ldt =t} (10)
0
satisfies the differential equation of

x(t) = F(x(t),U(t)) (11

Subject to end constraints

12)
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and path constraints
U,L,<U(t)<Uy
pr < (@mam(t)v (Pmin(t)) < ou

VZL S ‘/Z S ‘/ZU
ur, u(t) uy (13)
w | w(t) < |wo
ar | ~ | a@®) ] T | aw
o o(t) o

The end constraint X(t}) = 0 is introduced to ensure equilibrium at the final conditions. The path constraint imposed
on the body angle # and the minimum, maximum flapping angle @.q:(t), @min(t)) is chosen such that it doesn’t
exceed the physical ability of the MAV.

In order to overcome the problem of choosing higher numbers of Fourier coeffeicents we use another function for
the flapping angle defined by Bhatia et al.[20]. This function was first introduced by Berman and Wang [1] for the
symmetric flapping during hovering and was later modifed by Doman et al. [21] to account for asymmetric flapping
and continuity beteween cycles. We will adopt here the function of Bhatia et al.[20] which differs from Doman et
al.[21] in how they define the continuity criteria. The flapping angle without the continuity criteria of Bhatia et al.[21]
is adopted at this stage as it will be showed later that no feasible solution is obtained when using this criteria. The
flapping angle can be defined as follows:

¢msinil{K¢sin[(w—5)t+7r2]} +¢0, 0 g ¢ § T

stin~1Kg w—>0

o(r) = (14
sinfl{K¢sin[®t+§~+ﬂ'2]} T <4< 2w
¢m sin~1Ky + ¢07 w=b ="=w

where & = ”i“i;g) and { = =229,

The optimal control problem will be the same as defined in Eq.10 satisfying Eq.11 subjected to Egs.[12,13] but
with a new vector of input U = [6 b0 Om Ky oy ad]. Equation 14 allows more freedom in the resulting
shape of the flapping angle using only four inputs while preserving the wave monotonicity. The input that control the
shape of waveform is K. The value of Ky = 1 represents a triangular wave while the case of Ky < 1 represents a

sinusoidal wave.

V. Solution of the Optimal Control Problem

A. Trim Solution

Before starting to solve the optimal control problem, we should make sure that the final forward speed requirement
is achievable. To do so, a simple optimization problem whose objective function is the minimum square error of the
inertial velocities and the final equilibrium conditions subjected to the path equations of Eql2 is to be solved. It can
be written as follows :

min S (Vi () = Vo) Va(t))? + X(15)° s)

subjected to the path constraints defined in Eq.12. Where & = [agp a b «, aq u w 6], is the vector of the design
variable

The Hawkmoth parameters used in this study, and the values used for the lower and upper bounds of the inputs,
states and the end conditions are tabluated in Tablel and Table3 respectively. The values of the final value column
which are left blank are part of the solution. The results of the optimization problem are tabulated in Table[2]. The
minimum values of the error obtained form this optimization for forward speed V; = 2m/s using three and five Fourier
coeffeicents were 8.6¢ =14 and 4.02¢ 713 respectively, which means that the forward speed requirement is feasible. This
result agrees well with the expiremental observations done by Willmott and Ellington [22] which indicated that the
normal range of the hawkmoth flight speed is [0—5]m/s. Now we proceed further to solve the optimal control problem
as it is physically well posed.

B. Optimal Control Solution

The optimal control problem defined by Eqs 10, 11, 12 is then solved using ICLOCS software. Figures [2] depicts
three solutions of the time histories of the body states obtained for three Fourier coeffeicents ag, a1, b1, aw, g , five
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Table 1: Hawkmoth parameters

Constant Value Constant Value
gl 0.44 mp 1.648(mg)
9 0.508 1, 2.08(g/cm?)
ag 27 f 26.3(Hz)
Sw 947.8(cm?) Az 0.05
R 51.9(mm) P 60.5°
c 18.3(mm) Cp, 0.7

Db/Lb 0.81 Pb 1100(Kg/m3)

Table 2: Optimization results

Variable ap(deg) a(deg) b(deg) ay(deg) | aq(deg) | u(m/s) | wim/s) | 6(deg)

Hovering 60.5 0 0 0 0 0 0 0
Forward(3FC) -0.02 -0.19 -0.18 44.9 48.9 1.81 0.86 25.5
Forward(5FC) 3.94 {1.7,1.84} | {-4.51,5.5} 45.8 45.8 1.9262 0.54 15.6

Fourier coeffeicents ag, a1, b1, az, ba, o, g and four coeffeicents ¢, , ¢o, 0, Ky, oy, g for ainitial guess for the final
time of T fy = 25T . It can be noticed from the Figures [2,a,b,c,d] that the equilibrium constraint is statisfied at the
begining of the last two cycles. Figure [2-a] indicates that the body attitude is always negative for the three different
cases of inputs. The case of Bhatia et al. is the most lower body pitch at the final time. These negative valuse of body
pitch 8 agrees with the concept of helicopter that the vehicle have to pitch down in order to move forward.

The time histories of the angles of attack «,,, o4, mean flapping angle ¢,,, inertial velocities V,,, V,, trajectory
H, X is shown in Figures[4a,b,c,d] respcetively. The change of the angles of attack during the different cycles indicates
that a forward thrust is generated as the upstroke angle of attack is always greater than the down stroke angle of attack
for the case of Fourier inputs. For the case of Bhatia et al., the upstroke angle of attack is almostly greater than the
down stroke angle of attack except at the last two cylces. This may be interpreted as when the hawkmoth reaches an
equilibrium state there is no need to generate more forward thrust to accelerate.

Despite the discrepancies between the time histories of the inputs,states and flight paths and the number of inputs,
they all end up with the same final time. This means that there is no unique solution satisfies the end conditions at
the same minimal final time. Figures [3,a,b,c,d,e.f] depicts the time history of the flapping angle for the different type
of inputs. The case of the three and five Fourier coeffeicents have three or four discontinuites between cylcles in the
range of [0° — 10Y]. The case of Bhatia et al. has much greater discontinuity particulary after the fourth cylce and
have some constant flapping angle in a three concecutive cycles. These results show that the continuity of the flapping
angle is an inevitable constraint. It shoud be noted that no feasible solution that satisfies all the boundary constraints
and equlibrium was obtained when appplying the continuity constraint. In addition to the discontinuity of the flapping
angle, the monotonicity of the flapping waveform should be conserved during the evoultion of the cycles. For instance,
the monotonicity of the flapping angle for the five Fourier coeffeicents is sustained only for the first four cycles. This
issue motivates the need for using the flapping waveform definedin Eq.14 [1, 21, 20].

Conclusion

In this work, a simplified flight dynamic model for a flapping-wing micro-air-vehicle performing a horizontal
stroke plane is considered. An optimal control problem is formulated to determine the evolution of the optimum
waveform for the flapping angle in the horizontal plane that results in minimum-time transition from hovering to
forward flight. The averaging theorem is used to transform the nonlinear, time-periodic flapping flight dynamics into a
time-invariant system. The waveform of the flapping angle is represented in a truncated fourier series. The appropriate
number of Fourier terms is discussed. The slowly-varying Fourier coefficients during maneuvers are seen as inputs
to the averaged dynamics. As such, the problem is formulated to determine the optimum evolution of the Fourier
coefficients that steers the averaged dynamics from a hovering equilibrium to a forward flight equilibrium. The time
history of the flapping angle results from using the Fourier coefficents as inputs and Bhatia et al. function indicates
that there is no unique solution to satisfy the objective. Also the use of the Bhati et al. waveform shows the power of
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Table 3: Input and State Bounds

Variable Lower Bound | Upper Bound | Final Value
to 0 0 0
tr 20T 10007 -
u(m/s) 0 5 -
w(m/s) -5 5 —
q(rad/s) -100 100 0
O(rad) —7/2 /2 —
Gmin,maz (rad) —m/2 /2 —
[ao, a, b] (rad) —7/2 /2 -
[y, aqg] (rad) —7/2 /2 -
V.(m/s) 0 0 0
Va(m/s) 2 2 2
2 T T T T T T T T T 0.4 T T T T T T T T T
3 Fourier Coeff.
181 5 Fourier Coeff.
16k 4 Coeff. Bhatia et al.
14 b
_.12r 4 _
% )
E 1 ‘ E
= o8t 1 =
06 T
04 .
02 4
0 L t L t L L L . 1 1.4 t L L t L . L . 1
o 2 4 & 8 10 12 14 16 18 20 o 2 4 6 8 10 12 14 16 18
T tT
a) Velocity U versus non-dimensional time b) Velocity W versus non-dimensional time
3 T T T T T T T T T 0 T T T T T T T T T
5F -
0b A
sk A
o S
B - 3 20t 1
= ] 5y

7 L L L L L L L L

L

0 2 4 6 8 10 12 14 16
t/T

18 20

¢) Angular velocity g versus non-dimensional time

20

=25

35

-40 L L L L L L L L L
0 2 4 6 8 10 12 14 16 18

t/T

d) Orientation 6 versus non-dimensional time

Figure 2: Time history of body variables for different initial guess of the final time using five inputs

mainting the wave monotoncity while capturing any kind of waveforms. Finally, it has to be pointed out the continuity

constraint of the flapping angle yields a nonfeasible solution when it was imposed on the problem.
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